Anatomical structures detection using topological constraint knowledge in fetal ultrasound DOI
Juncheng Guo, Guanghua Tan, Jianxin Lin

и другие.

Neurocomputing, Год журнала: 2024, Номер unknown, С. 129143 - 129143

Опубликована: Дек. 1, 2024

Язык: Английский

Automatic diagnosis of early pregnancy fetal nasal bone development based on complex mid-sagittal section ultrasound imaging DOI
Xi Chen, Xiaoyu Xu, Lyuyang Tong

и другие.

Neurocomputing, Год журнала: 2025, Номер unknown, С. 129773 - 129773

Опубликована: Фев. 1, 2025

Язык: Английский

Процитировано

0

Automated Left Ventricle Segmentation in Echocardiography Using YOLO: A Deep Learning Approach for Enhanced Cardiac Function Assessment DOI Open Access
M. Balasubramani, Chih‐Wei Sung, Mu‐Yang Hsieh

и другие.

Electronics, Год журнала: 2024, Номер 13(13), С. 2587 - 2587

Опубликована: Июль 1, 2024

Accurate segmentation of the left ventricle (LV) using echocardiogram (Echo) images is essential for cardiovascular analysis. Conventional techniques are labor-intensive and exhibit inter-observer variability. Deep learning has emerged as a powerful tool automated medical image segmentation, offering advantages in speed potentially superior accuracy. This study explores efficacy employing YOLO (You Only Look Once) model LV Echo images. YOLO, cutting-edge object detection model, achieves exceptional speed–accuracy balance through its well-designed architecture. It utilizes efficient dilated convolutional layers bottleneck blocks feature extraction while incorporating innovations like path aggregation spatial attention mechanisms. These attributes make compelling candidate adaptation to We posit that by fine-tuning pre-trained YOLO-based on well-annotated dataset, we can leverage model’s strengths real-time processing precise localization achieve robust segmentation. The proposed approach entails rigorously labeled dataset. Model performance been evaluated established metrics such mean Average Precision (mAP) at an Intersection over Union (IoU) threshold 50% (mAP50) with 98.31% across range IoU thresholds from 95% (mAP50:95) 75.27%. Successful implementation potential significantly expedite standardize advancement could translate improved clinical decision-making enhanced patient care.

Язык: Английский

Процитировано

2

Automated Left Ventricle Segmentation in Echocardiography using YOLO: A Deep Learning Approach for Enhanced Cardiac Function Assessment DOI Open Access
M. Balasubramani, Chih‐Wei Sung, Mu‐Yang Hsieh

и другие.

Опубликована: Май 21, 2024

Accurate segmentation of the Left Ventricle (LV) in Echocardiogram (Echo) images is essential for cardiovascular analysis. Conventional techniques are labor-intensive and exhibit inter-observer variability. Deep learning has emerged as a powerful tool automated medical image segmentation, offering advantages speed potentially superior accuracy. This study explores efficacy employing YOLO (You Only Look Once) model LV Echo images. YOLO, cutting-edge object detection model, achieves exceptional speed-accuracy balance through its well-designed architecture. It utilizes efficient dilated convolutional layers bottleneck blocks feature extraction, while incorporating innovations like path aggregation spatial attention mechanisms. These attributes make compelling candidate adaptation to We posit that by fine-tuning pre-trained based on well-annotated dataset, we can leverage model's strengths real-time processing precise localization achieve robust segmentation. The proposed approach entails rigorously labeled dataset. Model performance been evaluated using established metrics such mean Average Precision (mAP) at an Intersection over Union (IoU) threshold 50% (mAP50) with 98.31%and across range IoU thresholds from 95% (mAP50:95) 75.27%. Successful implementation potential significantly expedite standardize advancement could translate improved clinical decision-making enhanced patient care.

Язык: Английский

Процитировано

1

Optimized Pyramidal Convolution Shuffle attention neural network based fetal cardiac cycle detection from echocardiograms DOI

N. Balaji,

Ramarathnam Venkatesan

Biomedical Signal Processing and Control, Год журнала: 2024, Номер 98, С. 106701 - 106701

Опубликована: Авг. 30, 2024

Язык: Английский

Процитировано

1

A rule-guided interpretable lightweight framework for fetal standard ultrasound plane capture and biometric measurement DOI
Jintang Li, Zhan Gao, Chunlian Wang

и другие.

Neurocomputing, Год журнала: 2024, Номер unknown, С. 129290 - 129290

Опубликована: Дек. 1, 2024

Язык: Английский

Процитировано

1

Fetal Cardiac Structure Detection Using Multi-task Learning DOI
Jie He, Lei Yang, Yunping Zhu

и другие.

Lecture notes in computer science, Год журнала: 2024, Номер unknown, С. 405 - 419

Опубликована: Янв. 1, 2024

Язык: Английский

Процитировано

0

Automatic Diagnosis of Early Pregnancy Fetal Nasal Bone Development Based on Complex Mid-Sagittal Section Ultrasound Imaging DOI
Xi Chen, Xiaoyu Xu, Lyuyang Tong

и другие.

Опубликована: Янв. 1, 2024

Язык: Английский

Процитировано

0

Anatomical structures detection using topological constraint knowledge in fetal ultrasound DOI
Juncheng Guo, Guanghua Tan, Jianxin Lin

и другие.

Neurocomputing, Год журнала: 2024, Номер unknown, С. 129143 - 129143

Опубликована: Дек. 1, 2024

Язык: Английский

Процитировано

0