An imbalanced learning method based on graph tran-smote for fraud detection DOI Creative Commons
Jintao Wen, Xianghong Tang, Jianguang Lu

и другие.

Scientific Reports, Год журнала: 2024, Номер 14(1)

Опубликована: Июль 17, 2024

Abstract Fraud seriously threatens individual interests and social stability, so fraud detection has attracted much attention in recent years. In scenarios such as media, fraudsters typically hide among numerous benign users, constituting only a small minority often forming “small gangs”. Due to the scarcity of fraudsters, conventional graph neural network might overlook or obscure critical information, leading insufficient representation characteristics. To address these issues, tran-smote on graphs (GTS) method for is proposed by this study. Structural features each type node are deeply mined using subgraph extractor, integrated with attribute transformer technology, node’s information enriched, thereby addressing issue inadequate feature representation. Additionally, approach involves setting embedding space generate new nodes representing classes, an edge generator used provide relevant connection nodes, alleviating class imbalance problem. The results from experiments two real datasets demonstrate that GTS, performs better than current state-of-the-art baseline.

Язык: Английский

Optimizing Models for the Prediction of One Step Ahead Extreme Flows to Wastewater Treatment Plants Using Different Synthetic Sampling Methods DOI

Isaac Musaazi,

Lu Liu, Andrew Shaw

и другие.

Опубликована: Янв. 1, 2025

Язык: Английский

Процитировано

0

Sample-customized implicit semantic data augmentation for neural networks regularization DOI
Xu Sheng Kang,

Jia Jia,

Bing Zhang

и другие.

Neurocomputing, Год журнала: 2025, Номер unknown, С. 130288 - 130288

Опубликована: Апрель 1, 2025

Процитировано

0

Graph Class Balance: A Unified Framework for Addressing Class Imbalance in Graph Neural Networks DOI
Chenxi Zhang, Fei Liu, Yutai Su

и другие.

Опубликована: Янв. 1, 2025

Язык: Английский

Процитировано

0

GQEO: Nearest Neighbor Graph-based Generalized Quadrilateral Element Oversampling for Class-imbalance Problem DOI
Qi Dai, Longhui Wang, Jing Zhang

и другие.

Neural Networks, Год журнала: 2024, Номер 184, С. 107107 - 107107

Опубликована: Дек. 27, 2024

Язык: Английский

Процитировано

2

An imbalanced learning method based on graph tran-smote for fraud detection DOI Creative Commons
Jintao Wen, Xianghong Tang, Jianguang Lu

и другие.

Scientific Reports, Год журнала: 2024, Номер 14(1)

Опубликована: Июль 17, 2024

Abstract Fraud seriously threatens individual interests and social stability, so fraud detection has attracted much attention in recent years. In scenarios such as media, fraudsters typically hide among numerous benign users, constituting only a small minority often forming “small gangs”. Due to the scarcity of fraudsters, conventional graph neural network might overlook or obscure critical information, leading insufficient representation characteristics. To address these issues, tran-smote on graphs (GTS) method for is proposed by this study. Structural features each type node are deeply mined using subgraph extractor, integrated with attribute transformer technology, node’s information enriched, thereby addressing issue inadequate feature representation. Additionally, approach involves setting embedding space generate new nodes representing classes, an edge generator used provide relevant connection nodes, alleviating class imbalance problem. The results from experiments two real datasets demonstrate that GTS, performs better than current state-of-the-art baseline.

Язык: Английский

Процитировано

1