
IEEE Open Journal of the Communications Society, Год журнала: 2024, Номер 5, С. 7511 - 7524
Опубликована: Янв. 1, 2024
Язык: Английский
IEEE Open Journal of the Communications Society, Год журнала: 2024, Номер 5, С. 7511 - 7524
Опубликована: Янв. 1, 2024
Язык: Английский
Remote Sensing, Год журнала: 2024, Номер 16(18), С. 3394 - 3394
Опубликована: Сен. 12, 2024
With the rapid development of satellite remote sensing technology, carbon-cycle research, as a key focus global climate change, has also been widely developed in terms carbon source/sink-research methods. The internationally recognized “top-down” approach, which is based on observations, an important means to verify greenhouse gas-emission inventories. This article reviews principles, categories, and detection payloads for gases introduces inversion algorithms datasets XCO2. It emphasizes methods machine learning assimilation algorithms. Additionally, it presents technology achievements carbon-assimilation systems used estimate fluxes. Finally, summarizes prospects future improve accuracy estimating monitoring Earth’s processes.
Язык: Английский
Процитировано
8Remote Sensing, Год журнала: 2025, Номер 17(3), С. 505 - 505
Опубликована: Янв. 31, 2025
The combined use of synthetic aperture radar (SAR) and optical images for surface observation is gaining increasing attention. Optical images, with their distinct edge features, can accurately classify different objects, while SAR reveal deeper internal variations. To address the challenge differing feature distributions in multi-source we propose an enhancement network, OSNet (network images), designed to jointly extract features from enhance representation. consists three core modules: a dual-branch backbone, synergistic attention integration module, global-guided local fusion module. These modules, respectively, handle modality-independent extraction, sharing, global-local fusion. In backbone introduce differentiable Lee filter Laplacian detection operator branch suppress noise features. Additionally, module facilitate cross-modal information exchange between two branches. We validated OSNet’s performance on segmentation tasks (WHU-OPT-SAR) regression (SNOW-OPT-SAR). results show that improved PA MIoU by 2.31% 2.58%, task, reduced MAE RMSE 3.14% 4.22%, task.
Язык: Английский
Процитировано
0International Journal of Hydrogen Energy, Год журнала: 2025, Номер unknown
Опубликована: Фев. 1, 2025
Язык: Английский
Процитировано
0Journal of Computer and Communications, Год журнала: 2025, Номер 13(03), С. 103 - 115
Опубликована: Янв. 1, 2025
Язык: Английский
Процитировано
0Applied Energy, Год журнала: 2025, Номер 389, С. 125789 - 125789
Опубликована: Март 30, 2025
Язык: Английский
Процитировано
0Drones, Год журнала: 2025, Номер 9(4), С. 263 - 263
Опубликована: Март 31, 2025
Multi-UAV path planning algorithms are crucial for the successful design and operation of unmanned aerial vehicle (UAV) networks. While many network researchers have proposed UAV to improve system performance, an in-depth review multi-UAV has not been fully explored yet. The purpose this study is survey, classify, compare existing in literature over last eight years various scenarios. After detailing classification, we based on time consumption, computational cost, complexity, convergence speed, adaptability. We also examine approaches, including metaheuristic, classical, heuristic, machine learning, hybrid methods. Finally, identify several open research problems further investigation. More required smart that can re-plan pathways fly real complex Therefore, aims provide insight into engineers contribute next-generation systems.
Язык: Английский
Процитировано
0International Journal of Knowledge Management, Год журнала: 2025, Номер 21(1), С. 1 - 23
Опубликована: Апрель 3, 2025
This study applies the dynamic routing algorithm based on attention mechanism to capsule network model, aiming address problem of multi - label entity relation extraction in utopian online literature. The research constructs an improved model and elaborates relevant theories, technical foundations, construction process. Through experiments, by comparing with models such as convolutional neural average pooling (Avg pooling+CNN), recurrent (RNN), (Att+RNN), results show that Att+capsule performs better terms indicators precision, recall, F1 score, is also more stable during training case analysis further verifies effectiveness extraction, theme mining, sentiment analysis. Future can be carried out directions expanding dataset, optimizing structure, application fields.
Язык: Английский
Процитировано
0Applied Thermal Engineering, Год журнала: 2025, Номер unknown, С. 126437 - 126437
Опубликована: Апрель 1, 2025
Язык: Английский
Процитировано
0Опубликована: Янв. 1, 2025
Язык: Английский
Процитировано
0Applied Energy, Год журнала: 2025, Номер 393, С. 125993 - 125993
Опубликована: Май 14, 2025
Язык: Английский
Процитировано
0