LMGA: Lightweight multi-graph augmentation networks for safe medication recommendation DOI Creative Commons
Xingxu Fan, Xingxu Fan, Xue Li

и другие.

Journal of King Saud University - Computer and Information Sciences, Год журнала: 2024, Номер 36(10), С. 102245 - 102245

Опубликована: Ноя. 17, 2024

Язык: Английский

Transformer-based medication recommendation with a multiple graph augmentation strategy DOI
Xue Li, Xiaomei Yu, G. M. Liu

и другие.

Expert Systems with Applications, Год журнала: 2024, Номер 257, С. 125091 - 125091

Опубликована: Авг. 13, 2024

Язык: Английский

Процитировано

4

Machine reading comprehension based named entity recognition for medical text DOI Creative Commons
Ziqi Zhang, Xiangwei Zheng, Jinsong Zhang

и другие.

Multimedia Tools and Applications, Год журнала: 2025, Номер unknown

Опубликована: Янв. 7, 2025

Язык: Английский

Процитировано

0

Human skin-inspired neuromorphic sensors DOI Open Access
Jianfeng Sun, Chenyu Zhang, Chenxi Yang

и другие.

Soft Science, Год журнала: 2025, Номер 5(2)

Опубликована: Март 21, 2025

Human skin-inspired neuromorphic sensors have shown great potential in revolutionizing machines to perceive and interact with environments. skin is a remarkable organ, capable of detecting wide variety stimuli high sensitivity adaptability. To emulate these complex functions, been engineered flexible or stretchable materials sense pressure, temperature, texture, other physical chemical factors. When integrated computing systems, which the brain’s ability process sensory information efficiently, can further enable real-time, context-aware responses. This study summarizes state-of-the-art research on principles computing, exploring their synergetic create intelligent adaptive systems for robotics, healthcare, wearable technology. Additionally, we discuss challenges material/device development, system integration, computational frameworks human sensors, highlight promising directions future research.

Язык: Английский

Процитировано

0

A novel reconstruction-based video anomaly detection with idempotent generative network DOI

Wenmin Dong,

Lifeng Zhang, Wenjuan Shi

и другие.

Alexandria Engineering Journal, Год журнала: 2025, Номер 124, С. 513 - 525

Опубликована: Апрель 11, 2025

Язык: Английский

Процитировано

0

Multi-Object Tracking based on Optimal Transport and Coordinate Attention Mechanism DOI
Wenjuan Shi, Xiangwei Zheng, Lifeng Zhang

и другие.

Signal Processing, Год журнала: 2025, Номер unknown, С. 110058 - 110058

Опубликована: Апрель 1, 2025

Язык: Английский

Процитировано

0

Automatic Detection and Classification of Natural Weld Defects Using Alternating Magneto-Optical Imaging and ResNet50 DOI Creative Commons
Yanfeng Li, Pengyu Gao, Yanlin Luo

и другие.

Sensors, Год журнала: 2024, Номер 24(23), С. 7649 - 7649

Опубликована: Ноя. 29, 2024

It is difficult to detect and identify natural defects in welded components. To solve this problem, according the Faraday magneto-optical (MO) effect, a nondestructive testing system for MO imaging, excited by an alternating magnetic field, established. For acquired images of crack, pit, lack penetration, gas pore, no defect, Gaussian filtering, bilateral median filtering are applied image preprocessing. The effectiveness these methods evaluated using metrics such as peak signal-noise ratio (PSNR) mean squared error. Principal component analysis (PCA) employed extract column vector features from downsampled defect images, which then serve input layer error backpropagation (BP) neural network model support machine (SVM) model. These two models can be used classification partial but recognition accuracy cracks pores comparatively low. further enhance weld defects, convolutional (CNN) ResNet50 established, parameters optimized. experimental results show that overall 99%. Compared with PCA-SVM CNN model, was increased 7.4% 1.8%, pore 10% 4%, respectively, indicating effectively accurately classify defects.

Язык: Английский

Процитировано

1

A forest fire detection method based on improved YOLOv5 DOI

Zukai Sun,

Renxin Xu, Xiangwei Zheng

и другие.

Signal Image and Video Processing, Год журнала: 2024, Номер 19(2)

Опубликована: Дек. 16, 2024

Язык: Английский

Процитировано

1

Research on Classification and Identification of Crack Faults in Steam Turbine Blades Based on Supervised Contrastive Learning DOI Creative Commons
Qinglei Zhang, Longfei Tang,

Jiyun Qin

и другие.

Entropy, Год журнала: 2024, Номер 26(11), С. 956 - 956

Опубликована: Ноя. 6, 2024

Steam turbine blades may crack, break, or suffer other failures due to high temperatures, pressures, and high-speed rotation, which seriously threatens the safety reliability of equipment. The signal characteristics different fault types are slightly different, making it difficult accurately classify faults rotating directly through vibration signals. This method combines a one-dimensional convolutional neural network (1DCNN) channel attention mechanism (CAM). 1DCNN can effectively extract local features time series data, while CAM assigns weights each highlight key features. To further enhance efficacy feature extraction classification accuracy, projection head is introduced in this paper systematically map all sample into normalized space, thereby improving model's capacity distinguish between distinct types. Finally, optimization supervised contrastive learning (SCL) strategy, model better capture subtle differences Experimental results show that proposed has an accuracy 99.61%, 97.48%, 96.22% task multiple crack at three speeds, significantly than Multilayer Perceptron (MLP), Residual Network (ResNet), Momentum Contrast (MoCo), Transformer methods.

Язык: Английский

Процитировано

0

LMGA: Lightweight multi-graph augmentation networks for safe medication recommendation DOI Creative Commons
Xingxu Fan, Xingxu Fan, Xue Li

и другие.

Journal of King Saud University - Computer and Information Sciences, Год журнала: 2024, Номер 36(10), С. 102245 - 102245

Опубликована: Ноя. 17, 2024

Язык: Английский

Процитировано

0