
Journal of King Saud University - Computer and Information Sciences, Год журнала: 2024, Номер 36(10), С. 102245 - 102245
Опубликована: Ноя. 17, 2024
Язык: Английский
Journal of King Saud University - Computer and Information Sciences, Год журнала: 2024, Номер 36(10), С. 102245 - 102245
Опубликована: Ноя. 17, 2024
Язык: Английский
Expert Systems with Applications, Год журнала: 2024, Номер 257, С. 125091 - 125091
Опубликована: Авг. 13, 2024
Язык: Английский
Процитировано
4Multimedia Tools and Applications, Год журнала: 2025, Номер unknown
Опубликована: Янв. 7, 2025
Язык: Английский
Процитировано
0Soft Science, Год журнала: 2025, Номер 5(2)
Опубликована: Март 21, 2025
Human skin-inspired neuromorphic sensors have shown great potential in revolutionizing machines to perceive and interact with environments. skin is a remarkable organ, capable of detecting wide variety stimuli high sensitivity adaptability. To emulate these complex functions, been engineered flexible or stretchable materials sense pressure, temperature, texture, other physical chemical factors. When integrated computing systems, which the brain’s ability process sensory information efficiently, can further enable real-time, context-aware responses. This study summarizes state-of-the-art research on principles computing, exploring their synergetic create intelligent adaptive systems for robotics, healthcare, wearable technology. Additionally, we discuss challenges material/device development, system integration, computational frameworks human sensors, highlight promising directions future research.
Язык: Английский
Процитировано
0Alexandria Engineering Journal, Год журнала: 2025, Номер 124, С. 513 - 525
Опубликована: Апрель 11, 2025
Язык: Английский
Процитировано
0Signal Processing, Год журнала: 2025, Номер unknown, С. 110058 - 110058
Опубликована: Апрель 1, 2025
Язык: Английский
Процитировано
0Sensors, Год журнала: 2024, Номер 24(23), С. 7649 - 7649
Опубликована: Ноя. 29, 2024
It is difficult to detect and identify natural defects in welded components. To solve this problem, according the Faraday magneto-optical (MO) effect, a nondestructive testing system for MO imaging, excited by an alternating magnetic field, established. For acquired images of crack, pit, lack penetration, gas pore, no defect, Gaussian filtering, bilateral median filtering are applied image preprocessing. The effectiveness these methods evaluated using metrics such as peak signal-noise ratio (PSNR) mean squared error. Principal component analysis (PCA) employed extract column vector features from downsampled defect images, which then serve input layer error backpropagation (BP) neural network model support machine (SVM) model. These two models can be used classification partial but recognition accuracy cracks pores comparatively low. further enhance weld defects, convolutional (CNN) ResNet50 established, parameters optimized. experimental results show that overall 99%. Compared with PCA-SVM CNN model, was increased 7.4% 1.8%, pore 10% 4%, respectively, indicating effectively accurately classify defects.
Язык: Английский
Процитировано
1Signal Image and Video Processing, Год журнала: 2024, Номер 19(2)
Опубликована: Дек. 16, 2024
Язык: Английский
Процитировано
1Entropy, Год журнала: 2024, Номер 26(11), С. 956 - 956
Опубликована: Ноя. 6, 2024
Steam turbine blades may crack, break, or suffer other failures due to high temperatures, pressures, and high-speed rotation, which seriously threatens the safety reliability of equipment. The signal characteristics different fault types are slightly different, making it difficult accurately classify faults rotating directly through vibration signals. This method combines a one-dimensional convolutional neural network (1DCNN) channel attention mechanism (CAM). 1DCNN can effectively extract local features time series data, while CAM assigns weights each highlight key features. To further enhance efficacy feature extraction classification accuracy, projection head is introduced in this paper systematically map all sample into normalized space, thereby improving model's capacity distinguish between distinct types. Finally, optimization supervised contrastive learning (SCL) strategy, model better capture subtle differences Experimental results show that proposed has an accuracy 99.61%, 97.48%, 96.22% task multiple crack at three speeds, significantly than Multilayer Perceptron (MLP), Residual Network (ResNet), Momentum Contrast (MoCo), Transformer methods.
Язык: Английский
Процитировано
0Journal of King Saud University - Computer and Information Sciences, Год журнала: 2024, Номер 36(10), С. 102245 - 102245
Опубликована: Ноя. 17, 2024
Язык: Английский
Процитировано
0