Robust internal representations for domain generalization DOI Creative Commons
Mohammad Rostami

AI Magazine, Год журнала: 2023, Номер 44(4), С. 467 - 481

Опубликована: Окт. 26, 2023

Abstract This paper, which is part of the New Faculty Highlights Invited Speaker Program AAAI'23, serves as a comprehensive survey my research in transfer learning by utilizing embedding spaces. The work reviewed this paper specifically revolves around inherent challenges associated with continual and limited availability labeled data. By providing an overview past ongoing contributions, aims to present holistic understanding research, paving way for future explorations advancements field. My delves into various settings learning, including, few‐shot zero‐shot domain adaptation, distributed learning. I hope provides forward‐looking perspective researchers who would like focus on similar directions.

Язык: Английский

Few-shot multi-scale railway obstacle detection via lightweight linear transformer and precise feature reweighting DOI
Zongyang Zhao, Zefeng Sun, Jiehu Kang

и другие.

Measurement, Год журнала: 2025, Номер unknown, С. 117584 - 117584

Опубликована: Апрель 1, 2025

Язык: Английский

Процитировано

0

GCapNet-FSD: A heterogeneous graph capsule network for few-shot object detection DOI
Jiaxu Leng, Qianru Chen, Taiyue Chen

и другие.

Neural Networks, Год журнала: 2025, Номер 189, С. 107570 - 107570

Опубликована: Май 16, 2025

Язык: Английский

Процитировано

0

Decoupled DETR for Few-Shot Object Detection DOI
Zeyu Shangguan,

Lian Huai,

Tong Liu

и другие.

Lecture notes in computer science, Год журнала: 2024, Номер unknown, С. 158 - 174

Опубликована: Дек. 6, 2024

Язык: Английский

Процитировано

2

Multi-level similarity transfer and adaptive fusion data augmentation for few-shot object detection DOI
Songhao Zhu, Yi Wang

Journal of Visual Communication and Image Representation, Год журнала: 2024, Номер 105, С. 104340 - 104340

Опубликована: Ноя. 12, 2024

Язык: Английский

Процитировано

1

Enhanced enchondroma detection from x‐ray images using deep learning: A step towards accurate and cost‐effective diagnosis DOI Creative Commons
Şafak Aydın Şimşek, Ayhan AYDIN, Ferhat Say

и другие.

Journal of Orthopaedic Research®, Год журнала: 2024, Номер 42(12), С. 2826 - 2834

Опубликована: Июль 15, 2024

This study investigates the automated detection of enchondromas, benign cartilage tumors, from x-ray images using deep learning techniques. Enchondromas pose diagnostic challenges due to their potential for malignant transformation and overlapping radiographic features with other conditions. Leveraging a data set comprising 1645 1173 patients, deep-learning model implemented Detectron2 achieved an accuracy 0.9899 in detecting enchondromas. The employed rigorous validation processes compared its findings existing literature, highlighting superior performance approach. Results indicate machine improving reducing healthcare costs associated advanced imaging modalities. underscores significance early accurate enchondromas effective patient management suggests avenues further research musculoskeletal tumor detection.

Язык: Английский

Процитировано

0

Optimized Design of Instrument Recognition Based on CNN Model DOI Creative Commons
Yuanmei Jiao, Xiaoguang Lin

Applied Mathematics and Nonlinear Sciences, Год журнала: 2024, Номер 9(1)

Опубликована: Янв. 1, 2024

Abstract Intelligent recognition of instrument features plays an important role in automation management and overhaul also facilitates the realization accurate reading key parameters complex environments. The dial intelligent system proposed this paper consists geometry correction, pointer segmentation, modules. Combining idea GhostNet model to improve structure backbone network Mask RCNN model, attention mechanism is introduced into U-Net minimum outer rectangle method used for recognition. Under different viewpoint rotation angles, errors paper’s are relatively stable, they less than 1%. region segmentation precision, recall, accuracy 99.39%, 99.05%, 98.38%, respectively. average error results only -0.04°C, which satisfactory

Язык: Английский

Процитировано

0

Robust internal representations for domain generalization DOI Creative Commons
Mohammad Rostami

AI Magazine, Год журнала: 2023, Номер 44(4), С. 467 - 481

Опубликована: Окт. 26, 2023

Abstract This paper, which is part of the New Faculty Highlights Invited Speaker Program AAAI'23, serves as a comprehensive survey my research in transfer learning by utilizing embedding spaces. The work reviewed this paper specifically revolves around inherent challenges associated with continual and limited availability labeled data. By providing an overview past ongoing contributions, aims to present holistic understanding research, paving way for future explorations advancements field. My delves into various settings learning, including, few‐shot zero‐shot domain adaptation, distributed learning. I hope provides forward‐looking perspective researchers who would like focus on similar directions.

Язык: Английский

Процитировано

0