Rendiconti lincei. Scienze fisiche e naturali, Год журнала: 2024, Номер unknown
Опубликована: Окт. 18, 2024
Язык: Английский
Rendiconti lincei. Scienze fisiche e naturali, Год журнала: 2024, Номер unknown
Опубликована: Окт. 18, 2024
Язык: Английский
Energy Conversion and Management, Год журнала: 2025, Номер 326, С. 119484 - 119484
Опубликована: Янв. 13, 2025
Язык: Английский
Процитировано
2Expert Systems with Applications, Год журнала: 2025, Номер 268, С. 126361 - 126361
Опубликована: Янв. 2, 2025
Язык: Английский
Процитировано
1Physics of Fluids, Год журнала: 2025, Номер 37(2)
Опубликована: Фев. 1, 2025
The prompt and precise prediction of lost circulation is essential for safeguarding the security drilling operations in field. This study introduces a model convolutional neural networks-long short-term memory-feature-time graph attention network-transformer (CL-FTGTR) that combines improved complete ensemble empirical mode decomposition with adaptive noise (ICEEMDAN) data trend reconstruction. A notable feature this utilization an innovative logging analysis technique processing fluid engineering parameters, synthesis two consecutive encoding modules: Feature-GAN-transformer (FGTR) time-GAN-transformer (TGTR). Experimental results confirm following: ① ICEEMDAN algorithm can effectively filter out extract components, minimizing impact on outcomes. ② Convolutional memory (CLSTM) position module, substituting traditional sin-cos encoding, significantly improves model's ability to encapsulate global information within input data. ③ FGTR TGTR modules are capable efficiently handling time dimension data, leading significant enhancement performance model. CL-FTGTR was experimentally tested across four wells same block, essentiality its confirmed by five metrics. attained peak precision, recall, F1PA%K, area under curve values 0.908, 0.948, 0.967, 0.927, respectively. findings demonstrate predicting boasts high precision dependability.
Язык: Английский
Процитировано
0Data-Centric Engineering, Год журнала: 2025, Номер 6
Опубликована: Янв. 1, 2025
Abstract Stochastic generators are essential to produce synthetic realizations that preserve target statistical properties. We propose GenFormer, a stochastic generator for spatio-temporal multivariate processes. It is constructed using Transformer-based deep learning model learns mapping between Markov state sequence and time series values. The data generated by the GenFormer marginal distributions approximately capture other desired properties even in challenging applications involving large number of spatial locations long simulation horizon. applied simulate wind speed at various stations Florida calculate exceedance probabilities risk management.
Язык: Английский
Процитировано
0Applied Energy, Год журнала: 2025, Номер 391, С. 125951 - 125951
Опубликована: Апрель 21, 2025
Язык: Английский
Процитировано
0Rendiconti lincei. Scienze fisiche e naturali, Год журнала: 2024, Номер unknown
Опубликована: Окт. 18, 2024
Язык: Английский
Процитировано
2