Опубликована: Янв. 1, 2024
Язык: Английский
Опубликована: Янв. 1, 2024
Язык: Английский
Applied Mathematical Modelling, Год журнала: 2024, Номер unknown, С. 115906 - 115906
Опубликована: Дек. 1, 2024
Язык: Английский
Процитировано
10International Journal for Numerical Methods in Engineering, Год журнала: 2025, Номер 126(3)
Опубликована: Фев. 7, 2025
ABSTRACT This study proposes a hybrid collocation approach for simulating heat conduction problems in anisotropic functionally graded materials over extended time intervals. In this approach, the Krylov deferred correction (KDC) scheme is employed temporal discretization of dynamic problems, featuring novel numerical implementation designed to ensure precise satisfaction boundary conditions. The localized radial basis function (LRBF) method modified and utilized solve resulting value problems. A new developed combined with an optimization strategy distribution source points enhance performance LRBF scheme. synergizes KDC technique, which supports large step sizes, method, characterized by its truly meshless nature, address long durations. Additionally, coefficient matrix produced sparse depends solely on spatial distances between points, advantageous long‐term simulations. Numerical simulations spanning thousands steps demonstrate accuracy, stability, convergence approach. framework shows significant improvements existing methods, particularly handling substantial temperature variations.
Язык: Английский
Процитировано
2Computers & Mathematics with Applications, Год журнала: 2025, Номер 183, С. 271 - 286
Опубликована: Фев. 26, 2025
Язык: Английский
Процитировано
2Applied Mathematics Letters, Год журнала: 2024, Номер unknown, С. 109331 - 109331
Опубликована: Окт. 1, 2024
Язык: Английский
Процитировано
3Applied Mathematical Modelling, Год журнала: 2025, Номер unknown, С. 116093 - 116093
Опубликована: Март 1, 2025
Язык: Английский
Процитировано
0Engineering Analysis with Boundary Elements, Год журнала: 2025, Номер 176, С. 106241 - 106241
Опубликована: Апрель 2, 2025
Язык: Английский
Процитировано
0Neural Networks, Год журнала: 2025, Номер 188, С. 107559 - 107559
Опубликована: Апрель 27, 2025
Язык: Английский
Процитировано
0Applied Mathematics and Computation, Год журнала: 2025, Номер 502, С. 129501 - 129501
Опубликована: Май 2, 2025
Язык: Английский
Процитировано
0Mathematics and Computers in Simulation, Год журнала: 2025, Номер unknown
Опубликована: Май 1, 2025
Язык: Английский
Процитировано
0International journal of mechanical system dynamics, Год журнала: 2025, Номер unknown
Опубликована: Июнь 5, 2025
ABSTRACT In this article, the physics informed neural networks (PINNs) is employed for numerical simulation of heat transfer involving a moving source under mixed boundary conditions. To reduce computational effort and increase accuracy, new training method proposed that uses continuous time‐stepping through learning. A single network initialized used as sliding window function across time domain. On each interval trained with initial condition iteration solution obtained at iteration. Thus, framework enables computation large temporal intervals without increasing complexity itself. The to estimate temperature distribution in homogeneous medium source. results from compared traditional finite element good agreement seen.
Язык: Английский
Процитировано
0