
Neuron, Год журнала: 2019, Номер 105(4), С. 742 - 758.e6
Опубликована: Дек. 10, 2019
Язык: Английский
Neuron, Год журнала: 2019, Номер 105(4), С. 742 - 758.e6
Опубликована: Дек. 10, 2019
Язык: Английский
Nature reviews. Neuroscience, Год журнала: 2018, Номер 19(11), С. 672 - 686
Опубликована: Окт. 9, 2018
Язык: Английский
Процитировано
425Communications Biology, Год журнала: 2019, Номер 2(1)
Опубликована: Окт. 10, 2019
Abstract The brain is constituted of multiple networks functionally correlated areas, out which the default-mode network (DMN) largest. Most existing research into DMN has taken a corticocentric approach. Despite its resemblance with unitary model limbic system, contribution subcortical structures to may be underappreciated. Here, we propose more comprehensive neuroanatomical including such as basal forebrain, cholinergic nuclei, anterior and mediodorsal thalamic nuclei. Additionally, tractography diffusion-weighted imaging was employed explore structural connectivity, revealed that thalamus forebrain are central importance for functioning DMN. these neurochemically diverse nuclei reconciles previous neuroimaging neuropathological findings in diseased brains offers potential identifying conserved homologue other mammalian species.
Язык: Английский
Процитировано
318NeuroImage, Год журнала: 2019, Номер 189, С. 516 - 532
Опубликована: Янв. 30, 2019
Intrinsic connectivity, measured using resting-state fMRI, has emerged as a fundamental tool in the study of human brain. However, due to practical limitations, many studies do not collect enough data generate reliable measures intrinsic connectivity necessary for studying individual differences. Here we present general functional (GFC) method leveraging shared features across and task fMRI demonstrate Human Connectome Project Dunedin Study that GFC offers better test-retest reliability than estimated from same amount alone. Furthermore, at equivalent scan lengths, displayed higher estimates heritability connectivity. We also found predictions cognitive ability generalized datasets, performing well or Collectively, our work suggests can improve existing datasets and, subsequently, opportunity identify meaningful correlates differences behavior. Given are often collected together, researchers immediately derive more through adoption rather solely data. Moreover, by capturing heritable variation represents novel endophenotype with broad applications clinical neuroscience biomarker discovery.
Язык: Английский
Процитировано
306Neuron, Год журнала: 2018, Номер 100(4), С. 977 - 993.e7
Опубликована: Окт. 25, 2018
Язык: Английский
Процитировано
273Neuron, Год журнала: 2023, Номер 111(16), С. 2469 - 2487
Опубликована: Май 10, 2023
Язык: Английский
Процитировано
268Biological Psychiatry, Год журнала: 2020, Номер 90(10), С. 689 - 700
Опубликована: Июнь 7, 2020
Язык: Английский
Процитировано
263NeuroImage, Год журнала: 2017, Номер 163, С. 437 - 455
Опубликована: Сен. 12, 2017
Язык: Английский
Процитировано
258eLife, Год журнала: 2018, Номер 7
Опубликована: Фев. 16, 2018
Brain connectivity is often considered in terms of the communication between functionally distinct brain regions. Many studies have investigated extent to which patterns coupling strength multiple neural populations relates behaviour. For example, used ‘functional fingerprints’ characterise individuals' activity. Here, we investigate exact spatial arrangement cortical regions interacts with measures connectivity. We find that shape and location interact strongly modelling connectivity, present evidence functional predictive non-imaging behaviour lifestyle. believe that, many cases, cross-subject variations configuration are being interpreted as changes Therefore, a better understanding these effects important when interpreting relationship imaging data cognitive traits.
Язык: Английский
Процитировано
249Neuron, Год журнала: 2020, Номер 106(2), С. 340 - 353.e8
Опубликована: Фев. 19, 2020
Язык: Английский
Процитировано
238Nature Communications, Год журнала: 2020, Номер 11(1)
Опубликована: Авг. 25, 2020
Recently, deep learning has unlocked unprecedented success in various domains, especially using images, text, and speech. However, is only beneficial if the data have nonlinear relationships they are exploitable at available sample sizes. We systematically profiled performance of deep, kernel, linear models as a function size on UKBiobank brain images against established machine references. On MNIST Zalando Fashion, prediction accuracy consistently improves when escalating from to shallow-nonlinear models, further with deep-nonlinear models. In contrast, structural or functional scans, simple perform par more complex, highly parameterized age/sex across increasing sum, keep improving approaches ~10,000 subjects. Yet, nonlinearities for predicting common phenotypes typical scans remain largely inaccessible examined kernel methods.
Язык: Английский
Процитировано
236