Ocean Engineering, Год журнала: 2024, Номер 317, С. 120065 - 120065
Опубликована: Дек. 13, 2024
Язык: Английский
Ocean Engineering, Год журнала: 2024, Номер 317, С. 120065 - 120065
Опубликована: Дек. 13, 2024
Язык: Английский
Transportation Research Part E Logistics and Transportation Review, Год журнала: 2023, Номер 181, С. 103367 - 103367
Опубликована: Дек. 6, 2023
It is critical to have accurate ship trajectory prediction for collision avoidance and intelligent traffic management of manned ships emerging Maritime Autonomous Surface Ships (MASS). Deep learning methods based on AIS data emerged as a contemporary maritime transportation research focus. However, concerns about its accuracy computational efficiency widely exist across both academic industrial sectors, necessitating the discovery new solutions. This paper aims develop approach called Bi-Directional Information-Empowered (DBDIE) by utilising integrated multiple networks an attention mechanism address above issues. The DBDIE model extracts valuable features fusing Bi-directional Long Short-Term Memory (Bi-LSTM) Gated Recurrent Unit (Bi-GRU) neural networks. Additionally, weights two bi-directional units are optimised using mechanism, final results obtained through weight self-adjustment mechanism. effectiveness proposed verified comprehensive comparisons with state-of-the-art deep methods, including Neural Network (RNN), (LSTM), (GRU), Bi-LSTM, Bi-GRU, Sequence (Seq2Seq), Transformer experimental demonstrate that achieves most satisfactory outcomes than all other classical providing solution improving predicting trajectories, which becomes increasingly important in era safe navigation mixed MASS. As result, findings can aid development implementation proactive preventive measures avoid collisions, enhance efficiency, ensure safety.
Язык: Английский
Процитировано
34Engineering Applications of Artificial Intelligence, Год журнала: 2024, Номер 133, С. 108172 - 108172
Опубликована: Март 8, 2024
Ship Time Headway (STH) is used in maritime navigation to describe the time interval between arrivals of two consecutive ships same water area. This measurement may offer a straightforward way gauge frequency ship traffic and likelihood congestion particular STH an important factor understanding managing dynamics movements busy waterways. paper introduces hybrid deep learning method for predicting domain. The integrates Seasonal-Trend Decomposition using Loess (STL), Multi-head Self-Attention (MSA) mechanism into Long Short-Term Memory (LSTM) neural network. dataset was extracted from Automatic Identification System (AIS) through trajectory spatial motion, seasonal, trend residual components decomposition were then determined STL algorithms. MSA-LSTM adopted comprehensively capture evolving patterns sequence. Comparison studies with existing methods demonstrate accuracy robustness predictions provided by this method, indicating that proposed outperforms other models terms prediction performance capabilities. By STH, offers potential assist managers navigators assessing flow, thereby enabling them make informed decisions on safety efficiency.
Язык: Английский
Процитировано
10Ocean Engineering, Год журнала: 2024, Номер 308, С. 118394 - 118394
Опубликована: Июнь 7, 2024
Язык: Английский
Процитировано
7Ocean Engineering, Год журнала: 2024, Номер 311, С. 118927 - 118927
Опубликована: Авг. 19, 2024
Ship Time Headway (STH) is the time interval between two consecutive ships arriving in same water area. It serves as a crucial indicator for visually measuring probability of ship congestion and frequency passage busy waterways. Accurately predicting STH effective maritime traffic management. In this paper, we propose deep learning method aimed at simultaneously multiple areas (multi-STH). This integrates Variational Mode Decomposition (VMD) algorithm with Spatial-Temporal Attention Graph Convolution Network (STAGCN) to deeply capture complex spatial-temporal features STHs each areas. sequences were obtained from Automatic Identification System (AIS) reach, ensuring that these remained numerically continuous on timeline. The VMD was employed decompose into multi-feature inputs STAGCN, training model conjunction inland waterway network patterns variation Extensive experiments demonstrate proposed prediction surpasses accuracy robustness other existing methods, exhibiting excellent performance various multi-STH study accounts inherent correlation waterways, substantially improving efficiency compared single-waterway prediction. may have potential provide useful support be practical significance enhancing safety waterways navigation.
Язык: Английский
Процитировано
5Computers & Electrical Engineering, Год журнала: 2024, Номер 120, С. 109611 - 109611
Опубликована: Сен. 19, 2024
Язык: Английский
Процитировано
5Regional Studies in Marine Science, Год журнала: 2025, Номер unknown, С. 104106 - 104106
Опубликована: Март 1, 2025
Язык: Английский
Процитировано
0Ships and Offshore Structures, Год журнала: 2025, Номер unknown, С. 1 - 14
Опубликована: Март 13, 2025
Язык: Английский
Процитировано
0Transportation Research Part E Logistics and Transportation Review, Год журнала: 2025, Номер 197, С. 104072 - 104072
Опубликована: Март 21, 2025
Язык: Английский
Процитировано
0Ocean Engineering, Год журнала: 2025, Номер 329, С. 121151 - 121151
Опубликована: Апрель 12, 2025
Язык: Английский
Процитировано
0Ocean Engineering, Год журнала: 2025, Номер 335, С. 121693 - 121693
Опубликована: Июнь 4, 2025
Язык: Английский
Процитировано
0