Applied Energy, Год журнала: 2024, Номер 380, С. 125102 - 125102
Опубликована: Дек. 12, 2024
Язык: Английский
Applied Energy, Год журнала: 2024, Номер 380, С. 125102 - 125102
Опубликована: Дек. 12, 2024
Язык: Английский
Electronics, Год журнала: 2024, Номер 13(12), С. 2293 - 2293
Опубликована: Июнь 12, 2024
The traditional power prediction methods cannot fully take into account the differences and similarities between units. In face of complex changeable sea climate, strong coupling effect atmospheric circulation, ocean current movement, wave fluctuation, characteristics wind processes under different incoming currents weather are very different, spatio-temporal correlation law offshore is highly complex, which leads to not being able accurately predict short-term farms. Therefore, aiming at complexity power, this paper proposes an innovative method for farms based on a Gaussian mixture model (GMM). This considers units according measured data units, it divides with high category. Bayesian information criterion (BIC) contour coefficient (SC) were used obtain optimal number groups. average intra-group (AICC) was evaluate reliability measurements same quantized feature select representative each classification. Practical examples show that accuracy after unit classification 2.12% 1.1% higher than without group processing, mean square error absolute reduced, respectively, provides basis optimization economic operation
Язык: Английский
Процитировано
1Applied Energy, Год журнала: 2024, Номер 373, С. 123905 - 123905
Опубликована: Июль 15, 2024
Язык: Английский
Процитировано
1Decision Analytics Journal, Год журнала: 2024, Номер unknown, С. 100527 - 100527
Опубликована: Ноя. 1, 2024
Язык: Английский
Процитировано
1Ocean Engineering, Год журнала: 2024, Номер 317, С. 120046 - 120046
Опубликована: Дек. 11, 2024
Язык: Английский
Процитировано
1Applied Energy, Год журнала: 2024, Номер 380, С. 125102 - 125102
Опубликована: Дек. 12, 2024
Язык: Английский
Процитировано
1