Short-term power prediction method of wind farm cluster based on deep spatiotemporal correlation mining DOI
Da Wang, Mao Yang, Wei Zhang

и другие.

Applied Energy, Год журнала: 2024, Номер 380, С. 125102 - 125102

Опубликована: Дек. 12, 2024

Язык: Английский

Research on the Short-Term Prediction of Offshore Wind Power Based on Unit Classification DOI Open Access

Jinhua Zhang,

Xin Liu, Jie Yan

и другие.

Electronics, Год журнала: 2024, Номер 13(12), С. 2293 - 2293

Опубликована: Июнь 12, 2024

The traditional power prediction methods cannot fully take into account the differences and similarities between units. In face of complex changeable sea climate, strong coupling effect atmospheric circulation, ocean current movement, wave fluctuation, characteristics wind processes under different incoming currents weather are very different, spatio-temporal correlation law offshore is highly complex, which leads to not being able accurately predict short-term farms. Therefore, aiming at complexity power, this paper proposes an innovative method for farms based on a Gaussian mixture model (GMM). This considers units according measured data units, it divides with high category. Bayesian information criterion (BIC) contour coefficient (SC) were used obtain optimal number groups. average intra-group (AICC) was evaluate reliability measurements same quantized feature select representative each classification. Practical examples show that accuracy after unit classification 2.12% 1.1% higher than without group processing, mean square error absolute reduced, respectively, provides basis optimization economic operation

Язык: Английский

Процитировано

1

Exponential slime mould algorithm based spatial arrays optimization of hybrid wind-wave-PV systems for power enhancement DOI

Miwei Li,

Bo Yang,

Jinhang Duan

и другие.

Applied Energy, Год журнала: 2024, Номер 373, С. 123905 - 123905

Опубликована: Июль 15, 2024

Язык: Английский

Процитировано

1

A comprehensive evaluation of machine learning and deep learning algorithms for wind speed and power prediction DOI Creative Commons
Haytham H. Elmousalami,

Hadi Hesham Elmesalami,

Mina Maxi

и другие.

Decision Analytics Journal, Год журнала: 2024, Номер unknown, С. 100527 - 100527

Опубликована: Ноя. 1, 2024

Язык: Английский

Процитировано

1

Short-term motion prediction of FOWT based on time-frequency feature fusion LSTM combined with signal decomposition methods DOI
Biao Song, Qinghua Zhou, Rui Chang

и другие.

Ocean Engineering, Год журнала: 2024, Номер 317, С. 120046 - 120046

Опубликована: Дек. 11, 2024

Язык: Английский

Процитировано

1

Short-term power prediction method of wind farm cluster based on deep spatiotemporal correlation mining DOI
Da Wang, Mao Yang, Wei Zhang

и другие.

Applied Energy, Год журнала: 2024, Номер 380, С. 125102 - 125102

Опубликована: Дек. 12, 2024

Язык: Английский

Процитировано

1