Corneal quality assessment for corneal transplantation using hyperspectral imaging DOI
Maria Merin Antony,

Murukeshan Vadakke Matham

Опубликована: Янв. 1, 2024

Cornea is the most widely transplanted human tissue. To ensure good surgical results and effective visual recovery, thorough screening of donors donor tissues necessary throughout process [1]. This minimizes risk transmitting infectious diseases environmental contaminants to recipient, while also guaranteeing transplant’s high optical functional quality. Therefore, quality assessment cornea at various stages - from selection transplantation procedure crucial its longevity effectiveness.

Язык: Английский

Advances in Computer Vision and Spectroscopy Techniques for Non-Destructive Quality Assessment of Citrus Fruits: A Comprehensive Review DOI Creative Commons

Kai Yu,

Mingming Zhong, Wenjing Zhu

и другие.

Foods, Год журнала: 2025, Номер 14(3), С. 386 - 386

Опубликована: Янв. 24, 2025

Citrus fruits, classified under the Rutaceae family and genus, are valued for their high nutritional content, attributed to rich array of natural bioactive compounds. To ensure both quality value, precise non-destructive testing methods crucial. Among these, computer vision spectroscopy technologies have emerged as key tools. This review examines principles applications technologies—including traditional vision, hyperspectral, multispectral imaging—as well various techniques, such infrared, Raman, fluorescence, terahertz, nuclear magnetic resonance spectroscopy. Additionally, data fusion that integrate these discussed. The explores innovative uses approaches in inspection grading, damage detection, adulteration identification, traceability assessment. Each technology offers distinct characteristics advantages tailored specific requirements production. Through fusion, can be synergistically combined, enhancing accuracy depth assessments. Future advancements this field will likely focus on optimizing algorithms, selecting effective preprocessing feature extraction developing portable, on-site detection devices. These innovations drive industry toward increased intelligence precision control.

Язык: Английский

Процитировано

3

Deep learning in multi-sensor agriculture and crop management DOI
Darwin Alexis Arrechea-Castillo, Yady Tatiana Solano‐Correa

Elsevier eBooks, Год журнала: 2025, Номер unknown, С. 335 - 379

Опубликована: Янв. 1, 2025

Язык: Английский

Процитировано

0

Advances in Spectral Imaging: A Review of Techniques and Technologies DOI Creative Commons
Sani Mukhtar, Amir Arbabi, Jaime Viegas

и другие.

IEEE Access, Год журнала: 2025, Номер 13, С. 35848 - 35902

Опубликована: Янв. 1, 2025

Язык: Английский

Процитировано

0

Spectral imaging in crop monitoring and disease diagnosis: A comprehensive review DOI
Salah‐Eddine Laasli,

Fouad Mokrini,

Amal Hari

и другие.

CABI Reviews, Год журнала: 2025, Номер unknown

Опубликована: Фев. 26, 2025

Abstract Spectral imaging is a technique that captures and analyzes the spectral information of an object, such as its reflectance, transmittance, or fluorescence. It has been widely used in various fields, remote sensing, food quality assessment. In recent years, also emerged promising tool for crop disease diagnosis, it can provide rapid, non-destructive, accurate detection plant pathogens symptoms. This review aims to concise overview principles, methods, applications, challenges diagnosis. First, we introduce basic sensing concepts types imaging, hyperspectral, multispectral imaging. Second, discuss main steps techniques involved analysis, image acquisition, processing, feature extraction, classification. Third, present some representative examples applications fungal, bacterial, viral, nematode infections. Finally, highlight importance artificial intelligence integration alongside current limitations future directions

Язык: Английский

Процитировано

0

Progress in machine learning-supported electronic nose and hyperspectral imaging technologies for food safety assessment: A review DOI

Mogos Girmatsion,

Xiaoqian Tang,

Qi Zhang

и другие.

Food Research International, Год журнала: 2025, Номер unknown, С. 116285 - 116285

Опубликована: Март 1, 2025

Язык: Английский

Процитировано

0

Early and accurate nutrient deficiency detection in hydroponic crops using ensemble machine learning and hyperspectral imaging DOI Creative Commons

S. Nagarajan,

Maria Merin Antony,

Murukeshan Vadakke Matham

и другие.

Smart Agricultural Technology, Год журнала: 2025, Номер unknown, С. 100952 - 100952

Опубликована: Апрель 1, 2025

Язык: Английский

Процитировано

0

Sihm: A High-Resolution Hyperspectral Microscope for Plant Diagnostics DOI
Maria Merin Antony,

C. S. Suchand Sandeep,

Murukeshan Vadakke Matham

и другие.

Опубликована: Янв. 1, 2025

Язык: Английский

Процитировано

0

A non-destructive and precise root monitoring system for hydroponic crops using SWIR hyperspectral imaging DOI Creative Commons
Maria Merin Antony,

C. S. Suchand Sandeep,

K. Keerthi

и другие.

Plant Science, Год журнала: 2025, Номер unknown, С. 112544 - 112544

Опубликована: Май 1, 2025

Язык: Английский

Процитировано

0

Study on bionics-based swarm intelligence optimization algorithms for wavelength selection in near-infrared spectroscopy DOI
Ting Long, Yi Han,

Yatong Kang

и другие.

Infrared Physics & Technology, Год журнала: 2024, Номер 143, С. 105594 - 105594

Опубликована: Окт. 18, 2024

Язык: Английский

Процитировано

0

High-resolution optical image reconstruction based on adaptive sparse dictionary DOI
Zihan Lin, Shuhai Jia, Bo Wen

и другие.

Journal of Modern Optics, Год журнала: 2024, Номер unknown, С. 1 - 13

Опубликована: Ноя. 19, 2024

Image spatial resolution reflects the ability of an optical system to capture detailed information about object. Compared Low-resolution (LR) images, High-resolution (HR) images contain greater pixel density and textural detail. In experiments, it is difficult obtain ideal HR due effects acquisition equipment image degradation. To address problems, this paper proposes a reconstruction method based on adaptive sparse dictionary. The experimental show that area modulation transfer function (MTF) curve reconstructed improved by 16.41%, which represents increase in frequency components contains. Meanwhile cut-off from 0.2692cy/pix 0.4018cy/pix. achieves good results both efficiency accuracy. peak signal-to-noise ratio (PSNR) 20.1650 28.0192. feature similarity (FSIM) detail retention are above 90%.

Язык: Английский

Процитировано

0