Fusion k-means clustering and multi-head self-attention mechanism for a multivariate time prediction model with feature selection DOI
Mingwei Cai, Xueling Ma, Chao Zhang

и другие.

International Journal of Machine Learning and Cybernetics, Год журнала: 2024, Номер unknown

Опубликована: Дек. 12, 2024

Язык: Английский

Data-driven interpretable ensemble learning methods for the prediction of wind turbine power incorporating SHAP analysis DOI
Celal Çakıroğlu, Sercan Demir, Mehmet Hakan Özdemir

и другие.

Expert Systems with Applications, Год журнала: 2023, Номер 237, С. 121464 - 121464

Опубликована: Сен. 7, 2023

Язык: Английский

Процитировано

90

Fractional multivariate grey Bernoulli model combined with improved grey wolf algorithm: Application in short-term power load forecasting DOI
Yin Chen, Shuhua Mao

Energy, Год журнала: 2023, Номер 269, С. 126844 - 126844

Опубликована: Янв. 30, 2023

Язык: Английский

Процитировано

67

A wind speed forcasting model based on rime optimization based VMD and multi-headed self-attention-LSTM DOI
Wenhui Liu, Yulong Bai,

xiaoxin Yue

и другие.

Energy, Год журнала: 2024, Номер 294, С. 130726 - 130726

Опубликована: Фев. 16, 2024

Язык: Английский

Процитировано

36

An innovative interpretable combined learning model for wind speed forecasting DOI
Pei Du, Dongchuan Yang, Yanzhao Li

и другие.

Applied Energy, Год журнала: 2024, Номер 358, С. 122553 - 122553

Опубликована: Янв. 5, 2024

Язык: Английский

Процитировано

23

An overview of deterministic and probabilistic forecasting methods of wind energy DOI Creative Commons
Yuying Xie, Chaoshun Li,

Mengying Li

и другие.

iScience, Год журнала: 2022, Номер 26(1), С. 105804 - 105804

Опубликована: Дек. 14, 2022

In recent years, a variety of wind forecasting models have been developed, prompting necessity to review the abundant methods gain insights state-of-the-art development status. However, existing literature reviews only focus on subclass methods, such as multi-objective optimization and machine learning while lacking full particulars field. Furthermore, classification is unclear incomplete, especially considering rapid this Therefore, article aims provide systematic deterministic probabilistic from perspectives data source, model evaluation framework, technical background, theoretical basis, performance. It expected that work will junior researchers with broad detailed information for their future more accurate practical models.

Язык: Английский

Процитировано

44

Short-term wind power prediction method based on CEEMDAN-GWO-Bi-LSTM DOI Creative Commons
Hongbin Sun,

Qing Cui,

Jingya Wen

и другие.

Energy Reports, Год журнала: 2024, Номер 11, С. 1487 - 1502

Опубликована: Янв. 18, 2024

In order to improve the short-term prediction accuracy of wind power and provide basis for grid dispatching, a complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN) -grey wolf optimization (GWO) -bidirectional long memory network (Bi-LSTM) model is proposed predict output farms. Firstly, original data preprocessed, then decomposed into components that are easy extract features by using CEEMDAN. The Bi-LSTM established each component, grey algorithm used optimize parameters model. optimized hyperparameters brought results component. Finally, component superimposed reconstructed obtain final power. simulation analysis farm in Gansu Province shows CEEMDAN-GWO-Bi-LSTM has better prediction.

Язык: Английский

Процитировано

17

A fuzzy time series forecasting model with both accuracy and interpretability is used to forecast wind power DOI
Xinjie Shi, Jianzhou Wang, Bochen Zhang

и другие.

Applied Energy, Год журнала: 2023, Номер 353, С. 122015 - 122015

Опубликована: Окт. 4, 2023

Язык: Английский

Процитировано

18

Advancing Supervised Learning with the Wave Loss Function: A Robust and Smooth Approach DOI

Mushir Akhtar,

M. Tanveer, Mohd. Arshad

и другие.

Pattern Recognition, Год журнала: 2024, Номер 155, С. 110637 - 110637

Опубликована: Май 31, 2024

Язык: Английский

Процитировано

8

Robformer: A robust decomposition transformer for long-term time series forecasting DOI
Yang Yu, Ruizhe Ma, Zongmin Ma

и другие.

Pattern Recognition, Год журнала: 2024, Номер 153, С. 110552 - 110552

Опубликована: Май 3, 2024

Язык: Английский

Процитировано

7

Quantile deep learning model and multi-objective opposition elite marine predator optimization algorithm for wind speed prediction DOI
Jianzhou Wang, Honggang Guo, Zhiwu Li

и другие.

Applied Mathematical Modelling, Год журнала: 2022, Номер 115, С. 56 - 79

Опубликована: Ноя. 5, 2022

Язык: Английский

Процитировано

28