Emerging Trends and Technologies for Conservation and Sustainable Approach in Groundwater Management DOI

Lisha Borgohain,

Mayurakshi Gogoi,

Jayashri Dutta

и другие.

Advances in environmental engineering and green technologies book series, Год журнала: 2024, Номер unknown, С. 175 - 202

Опубликована: Дек. 6, 2024

Groundwater is a natural renewable resource vital for any life on Earth. management of emerging concern the conservation and protection this resource. With advent innovative technologies, managing such resources become easier to some extent. This chapter illustrates advanced their contribution, challenges future prospects sustainable groundwater. AI methods have widespread in decision-making recent years are accepted globally due cost-effectiveness, time-saving, efficient nature. AI-driven models provide precise analytical modelling, real-time monitoring, data integration groundwater management. Innovative can detect vulnerable regions that prone pollution depletion level draw attention scientists, local people policymakers prompt intervention.

Язык: Английский

Enhancing the accuracy of groundwater level prediction at different scales using spatio-temporal graph convolutional model DOI
Long Chen, Dezheng Zhang, Jianwei Xu

и другие.

Earth Science Informatics, Год журнала: 2025, Номер 18(2)

Опубликована: Фев. 1, 2025

Язык: Английский

Процитировано

2

Projection of groundwater level fluctuations using deep learning and dynamic system response models in a drought affected area DOI
Dilip Roy,

Chitra Rani Paul,

Md. Panjarul Haque

и другие.

Earth Science Informatics, Год журнала: 2025, Номер 18(1)

Опубликована: Янв. 1, 2025

Язык: Английский

Процитировано

0

Hydrogeological Insights: Assessing Groundwater in Trans-Yamuna Using Decision Making Method, Prayagraj, India DOI
Swapnil Sharma, H. K. Pandey, Rakesh Singh

и другие.

Iranian Journal of Science and Technology Transactions of Civil Engineering, Год журнала: 2025, Номер unknown

Опубликована: Март 12, 2025

Язык: Английский

Процитировано

0

Multi-Frequency SAR Polarimetry and Ground Penetrating Radar for Paleochannel Identification in the Thar Desert, India DOI
Sashikanta Sahoo, Ajanta Goswami, Shubham Awasthi

и другие.

Remote Sensing Applications Society and Environment, Год журнала: 2025, Номер unknown, С. 101533 - 101533

Опубликована: Апрель 1, 2025

Язык: Английский

Процитировано

0

An improved equation for potential discharge estimation in groundwater basin delineated watershed DOI Creative Commons

Christine Mayavani,

Indratmo Soekarno,

Mohammad Farid

и другие.

Results in Engineering, Год журнала: 2024, Номер unknown, С. 103238 - 103238

Опубликована: Окт. 1, 2024

Язык: Английский

Процитировано

1

Hybrid Drought Forecasting Framework for Water‐Scarce Regions Based on Support Vector Machine and Precipitation Index DOI
Abdullah A. Alsumaiei

Hydrological Processes, Год журнала: 2024, Номер 38(12)

Опубликована: Дек. 1, 2024

ABSTRACT Drought is a natural event that slowly deteriorates water reserves. This study aims to develop machine learning–based computational framework for monitoring drought status in water‐scarce regions. The proposed integrates the precipitation index (PI) with support vector models forecast occurrences based on an autoregressive modelling scheme. Due suitability of PI analysis arid climates, developed hybrid model appropriate regions limited rainfall. used historical dataset from 1958 2020 at Kuwait International Airport, City. area characterised by scarce rainfall and vulnerable severe shortages owing resources. Initially, time‐series datasets were examined stationarity validate utility model. autocorrelation function test was significantly associated time series 12‐ 24‐month drought‐monitoring scales. Predictive forecasting constructed predict up 3 months advance. Statistical evaluation metrics assess performance results showed strong association between observed predicted events, coefficients determination ( R 2 ) ranging 0.865 0.925 provide managers efficient reliable tools assist preparing management plans. provides guidance improving resource resilience under shortage scenarios other climatic applying suitable indices conjunction robust data‐driven models. baseline policymakers worldwide establish sustainable conservation strategies crucial insights disaster preparation.

Язык: Английский

Процитировано

1

Uncertainty Assessment of Ensemble Base Machine Learning Modeling for Multi-step Ahead Forecasting of Dam Reservoir Inflows DOI
Vahid Nourani,

Bagher Nikoufar,

Nardin Jabbarian Paknezhad

и другие.

Iranian Journal of Science and Technology Transactions of Civil Engineering, Год журнала: 2024, Номер unknown

Опубликована: Дек. 26, 2024

Язык: Английский

Процитировано

1

Emerging Trends and Technologies for Conservation and Sustainable Approach in Groundwater Management DOI

Lisha Borgohain,

Mayurakshi Gogoi,

Jayashri Dutta

и другие.

Advances in environmental engineering and green technologies book series, Год журнала: 2024, Номер unknown, С. 175 - 202

Опубликована: Дек. 6, 2024

Groundwater is a natural renewable resource vital for any life on Earth. management of emerging concern the conservation and protection this resource. With advent innovative technologies, managing such resources become easier to some extent. This chapter illustrates advanced their contribution, challenges future prospects sustainable groundwater. AI methods have widespread in decision-making recent years are accepted globally due cost-effectiveness, time-saving, efficient nature. AI-driven models provide precise analytical modelling, real-time monitoring, data integration groundwater management. Innovative can detect vulnerable regions that prone pollution depletion level draw attention scientists, local people policymakers prompt intervention.

Язык: Английский

Процитировано

0