Permeability Prediction and Potential Site Assessment for CO2 Storage from Core Data and Well-Log Data in Malay Basin Using Advanced Machine Learning Algorithms DOI Creative Commons

Md. Yeasin Arafath,

AKM Eahsanul Haque,

Numair Ahmed Siddiqui

и другие.

ACS Omega, Год журнала: 2025, Номер 10(6), С. 5430 - 5448

Опубликована: Фев. 5, 2025

Establishing a potential site characterization for carbon dioxide (CO2) storage in geological formations anticipates the appropriate reservoir properties, such as porosity, permeability, and so forth. Well logs seismic data were utilized to determine key including volume of shale, water saturation. These properties cross validated with core sets ensure accuracy. To enhance permeability estimation, sophisticated machine learning (ML) methods employed, categorizing into five classes ranging from extremely good (0) very low (4). Two ML models, Naïve Bayes (NB) multilayer perceptron (MLP), applied predict permeability. The MLP model outperformed NB model, achieving 99% training accuracy 93% testing accuracy, compared 78 73%, respectively, model. resulting comprehensive revealed distribution across three stratigraphic layers: B100 zone exhibited suitable caprock, while D35-1 D35-2 zones demonstrated excellent indicating CO2 reservoirs. "X" field reservoir, located at depths exceeding 1300 m, meets depth requirements (1000–1500 m) storage. Our integrated approach, combining empirical ML-based calculations well logs, proved effective characterizing reservoir. lithological defined nonreservoir sections between clay silt lines, identifying important caprocks interbedded shale/clay intervals. Seismic profiling confirmed continuous caprock overlying D group zone, crucial preventing upward migration. This analysis supports Malay Basin viable storage, contributing ongoing efforts capture research.

Язык: Английский

Machine Learning in Oil and Gas Exploration: A Review DOI Creative Commons
Ahmad Tijjani Lawal, Yingjie Yang, Hongmei He

и другие.

IEEE Access, Год журнала: 2024, Номер 12, С. 19035 - 19058

Опубликована: Янв. 1, 2024

A comprehensive assessment of machine learning applications is conducted to identify the developing trends for Artificial Intelligence (AI) in oil and gas sector, specifically focusing on geological geophysical exploration reservoir characterization. Critical areas, such as seismic data processing, facies lithofacies classification, prediction essential petrophysical properties (e.g., porosity, permeability, water saturation), are explored. Despite vital role these resource assessment, accurate remains challenging. This paper offers a detailed overview learning's involvement property prediction. It highlights its potential address various challenges, including predictive modelling, clustering tasks. Furthermore, review identifies unique barriers hindering widespread application exploration, uncertainties subsurface parameters, scale discrepancies, handling temporal spatial complexity. proposes solutions, practices contributing achieving optimal accuracy, outlines future research directions, providing nuanced understanding field's dynamics. Adopting robust management methods crucial enhancing operational efficiency an era marked by extensive generation. While acknowledging inherent limitations approaches, they surpass constraints traditional empirical analytical methods, establishing themselves versatile tools addressing industrial challenges. serves invaluable researchers venturing into less-charted territories this evolving field, offering valuable insights guidance research.

Язык: Английский

Процитировано

21

Performance evaluation of boosting machine learning algorithms for lithofacies classification in heterogeneous carbonate reservoirs DOI
Watheq J. Al‐Mudhafar,

Mohammed A. Abbas,

David A. Wood

и другие.

Marine and Petroleum Geology, Год журнала: 2022, Номер 145, С. 105886 - 105886

Опубликована: Сен. 9, 2022

Язык: Английский

Процитировано

57

A multiple-input deep residual convolutional neural network for reservoir permeability prediction DOI

Milad Masroor,

Mohammad Emami Niri,

Mohammad Hassan Sharifinasab

и другие.

Geoenergy Science and Engineering, Год журнала: 2023, Номер 222, С. 211420 - 211420

Опубликована: Янв. 5, 2023

Язык: Английский

Процитировано

35

Interpreting XGBoost predictions for shear-wave velocity using SHAP: Insights into gas hydrate morphology and saturation DOI

Junzhao Chen,

Jiachun You,

Junting Wei

и другие.

Fuel, Год журнала: 2024, Номер 364, С. 131145 - 131145

Опубликована: Фев. 6, 2024

Язык: Английский

Процитировано

14

Leveraging machine learning in porous media DOI Creative Commons
Mostafa Delpisheh, Benyamin Ebrahimpour,

Abolfazl Fattahi

и другие.

Journal of Materials Chemistry A, Год журнала: 2024, Номер 12(32), С. 20717 - 20782

Опубликована: Янв. 1, 2024

Evaluating the advantages and limitations of applying machine learning for prediction optimization in porous media, with applications energy, environment, subsurface studies.

Язык: Английский

Процитировано

14

A novel deep learning method based on 2-D CNNs and GRUs for permeability prediction of tight sandstone DOI

Yinhong Tian,

Guiwen Wang, Hongbin Li

и другие.

Geoenergy Science and Engineering, Год журнала: 2024, Номер 238, С. 212851 - 212851

Опубликована: Апрель 28, 2024

Язык: Английский

Процитировано

11

Toward accurate prediction of carbon dioxide (CO2) compressibility factor using tree-based intelligent schemes (XGBoost and LightGBM) and equations of state DOI Creative Commons
Behnam Amiri-Ramsheh, Aydin Larestani,

Saeid Atashrouz

и другие.

Results in Engineering, Год журнала: 2025, Номер unknown, С. 104035 - 104035

Опубликована: Янв. 1, 2025

Язык: Английский

Процитировано

2

Lithology identification using principal component analysis and particle swarm optimization fuzzy decision tree DOI
Quan Ren, Hongbing Zhang, Dailu Zhang

и другие.

Journal of Petroleum Science and Engineering, Год журнала: 2022, Номер 220, С. 111233 - 111233

Опубликована: Ноя. 13, 2022

Язык: Английский

Процитировано

38

A new method for dynamic predicting porosity and permeability of low permeability and tight reservoir under effective overburden pressure based on BP neural network DOI

Dongliang Jiang,

Hao Chen,

Jianpeng Xing

и другие.

Geoenergy Science and Engineering, Год журнала: 2023, Номер 226, С. 211721 - 211721

Опубликована: Март 25, 2023

Язык: Английский

Процитировано

18

An improved permeability estimation model using integrated approach of hybrid machine learning technique and shapley additive explanation DOI Creative Commons
Christopher N. Mkono, Chuanbo Shen,

Alvin K. Mulashani

и другие.

Journal of Rock Mechanics and Geotechnical Engineering, Год журнала: 2024, Номер unknown

Опубликована: Сен. 1, 2024

Язык: Английский

Процитировано

7