Chaos Solitons & Fractals, Год журнала: 2024, Номер 186, С. 115203 - 115203
Опубликована: Июнь 29, 2024
Язык: Английский
Chaos Solitons & Fractals, Год журнала: 2024, Номер 186, С. 115203 - 115203
Опубликована: Июнь 29, 2024
Язык: Английский
Physics Reports, Год журнала: 2024, Номер 1056, С. 1 - 70
Опубликована: Янв. 19, 2024
Язык: Английский
Процитировано
69The European Physical Journal Special Topics, Год журнала: 2024, Номер 233(4), С. 779 - 786
Опубликована: Март 14, 2024
Язык: Английский
Процитировано
46Communications Physics, Год журнала: 2024, Номер 7(1)
Опубликована: Фев. 21, 2024
Язык: Английский
Процитировано
31Physics Reports, Год журнала: 2024, Номер 1060, С. 1 - 54
Опубликована: Фев. 8, 2024
Язык: Английский
Процитировано
30Physical review. E, Год журнала: 2024, Номер 109(1)
Опубликована: Янв. 17, 2024
Hypergraphs capture the higher-order interactions in complex systems and always admit a factor graph representation, consisting of bipartite network nodes hyperedges. As hypegraphs are ubiquitous, investigating hypergraph robustness is problem major research interest. In literature hypergraphs so far only has been treated adopting factor-graph percolation, which describes well remain functional even after removal one more their nodes. This approach, however, fall short to describe situations fail when any removed, this latter scenario applying, for instance, supply chains, catalytic networks, protein-interaction networks chemical reactions, etc. Here we show that these cases correct process investigate with distinct from percolation. We build message-passing theory its critical behavior using generating function formalism supported by Monte Carlo simulations on random real data. Notably, node percolation threshold exceeds graphs. Furthermore differently what happens ordinary graphs, hyperedge do not coincide, exceeding threshold. These results demonstrate fat-tailed cardinality distribution hyperedges cannot lead hyper-resilience phenomenon contrast where divergent second moment guarantees zero
Язык: Английский
Процитировано
21Nature Reviews Physics, Год журнала: 2024, Номер 6(8), С. 468 - 482
Опубликована: Июль 5, 2024
Язык: Английский
Процитировано
18Knowledge-Based Systems, Год журнала: 2024, Номер 301, С. 112326 - 112326
Опубликована: Авг. 6, 2024
Язык: Английский
Процитировано
18Frontiers in Computational Neuroscience, Год журнала: 2023, Номер 17
Опубликована: Авг. 31, 2023
Simplicial complexes are mathematical constructions that describe higher-order interactions within the interconnecting elements of a network. Such become increasingly significant in neuronal networks since biological backgrounds and previous outcomes back them. In light this, current research explores network memristive Rulkov model. To end, master stability functions used to evaluate synchronization with pure pairwise hybrid (electrical chemical) synapses alongside two-node electrical multi-node chemical connections. The findings provide good insight into impact incorporating interaction Compared synapses, adjust patterns lower coupling parameter values. Furthermore, effect altering value on dynamics neurons state is researched. It also shown how increasing size can enhance by lowering parameters whereby occurs. Except for complete synchronization, cluster detected higher strength values wherein out completed state.
Язык: Английский
Процитировано
34Journal of Physics Complexity, Год журнала: 2024, Номер 5(1), С. 015020 - 015020
Опубликована: Март 1, 2024
Abstract Synchronization has received a lot of attention from the scientific community for systems evolving on static networks or higher-order structures, such as hypergraphs and simplicial complexes. In many relevant real-world applications, latter are not but do evolve in time, this work we thus discuss impact time-varying nature structures emergence global synchronization. To achieve goal, extend master stability formalism to account, general way, additional contributions arising time evolution structure supporting dynamical systems. The theory is successfully challenged against two illustrative examples, Stuart–Landau nonlinear oscillator Lorenz chaotic oscillator.
Язык: Английский
Процитировано
13Physical review. E, Год журнала: 2024, Номер 109(1)
Опубликована: Янв. 17, 2024
Hypergraphs are higher-order networks that capture the interactions between two or more nodes. can always be represented by factor graphs, i.e., bipartite nodes and (representing groups of nodes). Despite this universal representation, here we reveal $k$-core percolation on hypergraphs significantly distinct from graphs. We formulate theory hypergraph based assumption a hyperedge intact only if all its intact. This scenario applies, for instance, to supply chains where production product requires raw materials processing steps; in biology it applies protein-interaction protein complexes function proteins present; as well chemical reaction take place when reactants present. Formulating message-passing percolation, combining with critical phenomena networks, demonstrate sharp differences previously studied graph processes is allowed hyperedges have one damaged still To solve dichotomy hypegraphs define set pruning act either exclusively depend their second-neighborhood connectivity. show resulting second-neighbor problems each other. Moreover although these remain graphs processes, process acts phase diagram reduced $k$-cores.
Язык: Английский
Процитировано
12