
Computers and Electronics in Agriculture, Год журнала: 2025, Номер 235, С. 110354 - 110354
Опубликована: Апрель 4, 2025
Язык: Английский
Computers and Electronics in Agriculture, Год журнала: 2025, Номер 235, С. 110354 - 110354
Опубликована: Апрель 4, 2025
Язык: Английский
Agriculture, Год журнала: 2025, Номер 15(3), С. 281 - 281
Опубликована: Янв. 28, 2025
TSSC is one of the most important factors affecting loquat flavor, consumer satisfaction, and market competitiveness. To improve ability to assess loquats, a method leveraging near-infrared spectroscopy explainable artificial intelligence was proposed. The 900–1700 nm 156 fresh samples collected preprocessed using seven preprocessing techniques, significant wavelength extraction utilizing six feature methods eliminate data redundancy. Linear nonlinear models were employed establish relationship between spectrum TSSC, with focus on comparing analyzing prediction performance. findings reveal that combination 26 spectral bands selected by SPA PLSR model yielded best outcomes (R = 0.9031, RMSEP 0.6171, RPD 2.2803). contribution key wavelengths can be obtained SHAP, which explains differences in accuracy provides reference for application determination.
Язык: Английский
Процитировано
0Computers and Electronics in Agriculture, Год журнала: 2025, Номер 235, С. 110354 - 110354
Опубликована: Апрель 4, 2025
Язык: Английский
Процитировано
0