Applications of Multi-objective, Multi-label, and Multi-class Classifications DOI
Sanjay Chakraborty,

Lopamudra Dey

Springer tracts in nature-inspired computing, Год журнала: 2024, Номер unknown, С. 135 - 164

Опубликована: Янв. 1, 2024

Язык: Английский

WHEN MACHINES LEARN TECHNICAL ANALYSIS: AN APPLICATION ON TECHNICAL ANALYSIS WITH MACHINE LEARNING IN BORSA ISTANBUL DOI Open Access
Yunus Emre Akdoğan

Trakya Üniversitesi sosyal bilimler dergisi/Trakya Üniversitesi Sosyal Bilimler dergisi, Год журнала: 2025, Номер 27(IERFM 2025 Özel Sayı), С. 275 - 302

Опубликована: Март 14, 2025

There are two approaches to analyzing the value of a stock in financial markets: fundamental analysis and technical analysis. While focuses on finding intrinsic based company's condition current market conditions, identifying trading signals patterns by examining historical price behavior statistics. Although analysis, which is assumption that past movements can be an indicator for future movements, has predefined set rules, interpretation results closely related experience analyst. Therefore, interpretive part subjective dimension. This dimension rules indicate machine learning methods with experience-based logic important tool or predicting movements. The aim this study investigate potential use algorithms indicators stocks traded Borsa Istanbul as input predict In study, analyzed models compared. findings show addition strategies increases predictive power

Язык: Английский

Процитировано

0

Enhanced multilevel autism classification for children using eye-tracking and hybrid CNN-RNN deep learning models DOI

Suresh Cheekaty,

G. Muneeswari

Neural Computing and Applications, Год журнала: 2024, Номер unknown

Опубликована: Дек. 4, 2024

Язык: Английский

Процитировано

1

Peran AI dalam Mengatasi Tantangan Diagnosis Dini Autisme: Solusi Teknologi dan Implikasinya DOI Creative Commons

Bella Dwijaksara,

Safrian Andromeda

Jurnal Kesehatan dan Kebidanan Nusantara., Год журнала: 2024, Номер 2(2), С. 36 - 43

Опубликована: Авг. 20, 2024

Diagnosis dini gangguan spektrum autisme (Autism Spectrum Disorder/ASD) merupakan langkah krusial dalam memastikan intervensi yang efektif dan meningkatkan kualitas hidup individu terdampak. Namun, proses ini kerap menghadapi berbagai tantangan, seperti keterbatasan akses ke tenaga profesional, waktu diperlukan untuk evaluasi menyeluruh, risiko kesalahan diagnosis akibat subjektivitas penilaian manusia. Penelitian bertujuan mengatasi tantangan tersebut dengan mengeksplorasi peran kecerdasan buatan (Artificial Intelligence/AI) mendukung autisme. Metode digunakan penelitian mencakup tinjauan literatur sistematis analisis studi kasus implementasi teknologi AI medis, khususnya pada Berbagai teknik AI, pembelajaran mesin (machine learning), video, pengolahan bahasa alami (natural language processing), diidentifikasi dievaluasi menilai keefektifannya mendeteksi gejala sejak dini. juga menggunakan pendekatan kualitatif melalui wawancara mendalam ahli medis pengembang memahami peluang integrasi praktik diagnosis.Tujuan utama adalah mengidentifikasi potensi autisme, serta menyusun rekomendasi strategis bagi mengadopsi secara etis efektif. Hasil menunjukkan bahwa dapat signifikan akurasi efisiensi terutama data kompleks melibatkan pola perilaku interaksi sosial. mengungkapkan tidak sepenuhnya menggantikan karena masih terdapat bias algoritma kebutuhan akan holistik dari seorang profesional. Selain itu, penggunaan memerlukan regulasi ketat pelatihan khusus cara tepat bertanggung jawab. menyimpulkan meskipun menawarkan solusi menjanjikan implementasinya harus dilakukan terukur berbasis bukti, memperhatikan dampak sosial, etika,

Процитировано

0

Applications of Multi-objective, Multi-label, and Multi-class Classifications DOI
Sanjay Chakraborty,

Lopamudra Dey

Springer tracts in nature-inspired computing, Год журнала: 2024, Номер unknown, С. 135 - 164

Опубликована: Янв. 1, 2024

Язык: Английский

Процитировано

0