Recent Advancements in Applying Machine Learning in Power-to-X Processes: A Literature Review DOI Open Access
S. Mohammad Shojaei, Reihaneh Aghamolaei, Mohammad Reza Ghaani

и другие.

Sustainability, Год журнала: 2024, Номер 16(21), С. 9555 - 9555

Опубликована: Ноя. 2, 2024

For decades, fossil fuels have been the backbone of reliable energy systems, offering unmatched density and flexibility. However, as world shifts toward renewable energy, overcoming limitations intermittent power sources requires a bold reimagining storage integration. Power-to-X (PtX) technologies, which convert excess electricity into storable carriers, offer promising solution for long-term sector coupling. Recent advancements in machine learning (ML) revolutionized PtX systems by enhancing efficiency, scalability, sustainability. This review provides detailed analysis how ML techniques, such deep reinforcement learning, data-driven optimization, predictive diagnostics, are driving innovation Power-to-Gas (PtG), Power-to-Liquid (PtL), Power-to-Heat (PtH) systems. example, has improved real-time decision-making PtG reducing operational costs improving grid stability. Additionally, diagnostics powered increased system reliability identifying early failures critical components proton exchange membrane fuel cells (PEMFCs). Despite these advancements, challenges data quality, processing, scalability remain, presenting future research opportunities. These to decarbonizing hard-to-electrify sectors, heavy industry, transportation, aviation, aligning with global sustainability goals.

Язык: Английский

Impact of hole geometry on quenching and flashback of laminar premixed hydrogen-air flames DOI
H. Pers, Thierry Schuller

Combustion and Flame, Год журнала: 2025, Номер 274, С. 113988 - 113988

Опубликована: Янв. 30, 2025

Язык: Английский

Процитировано

2

Hydrogen reaction rate modeling based on convolutional neural network for large eddy simulation DOI Creative Commons
Quentin Malé, Corentin Lapeyre, Nicolas Noiray

и другие.

Data-Centric Engineering, Год журнала: 2025, Номер 6

Опубликована: Янв. 1, 2025

Abstract This article establishes a data-driven modeling framework for lean hydrogen ( $ {\mathrm{H}}_2 )-air reaction rates the Large Eddy Simulation (LES) of turbulent reactive flows. is particularly challenging since molecules diffuse much faster than heat, leading to large variations in burning rates, thermodiffusive instabilities at subfilter scale, and complex turbulence-chemistry interactions. Our approach leverages Convolutional Neural Network (CNN), trained approximate filtered from emulated LES data. First, five different premixed -air flame Direct Numerical Simulations (DNSs) are computed each with unique global equivalence ratio. Second, DNS snapshots downsampled emulate Third, CNN as function scalar quantities: progress variable, local ratio, thickening due filtering. Finally, performances model assessed on test solutions never seen during training. The retrieves very high accuracy. It also tested two filter downsampling parameters ratios between those used For these interpolation cases, approximates low error even though cases were not included training dataset. priori study shows that proposed machine learning able address challenge rates. paves way new paradigm simulation carbon-free combustion systems.

Язык: Английский

Процитировано

1

Recent Fuel-Based Advancements of Internal Combustion Engines: Status and Perspectives DOI
Alaa M. Khedr, Mohammed El-Adawy, Mhadi A. Ismael

и другие.

Energy & Fuels, Год журнала: 2025, Номер unknown

Опубликована: Март 7, 2025

Язык: Английский

Процитировано

1

Effect of hydrogen blending on thermoacoustic instability and flashback dynamics in partially premixed methane-air flames DOI
Chengfei Tao, Hao Zhou

Fuel, Год журнала: 2025, Номер 393, С. 135007 - 135007

Опубликована: Март 10, 2025

Язык: Английский

Процитировано

1

Extrapolation Performance of Convolutional Neural Network-Based Combustion Models for Large-Eddy Simulation: Influence of Reynolds Number, Filter Kernel and Filter Size DOI Creative Commons

Geveen Arumapperuma,

Nicola Sorace,

Mark J. Jansen

и другие.

Flow Turbulence and Combustion, Год журнала: 2025, Номер unknown

Опубликована: Март 24, 2025

Язык: Английский

Процитировано

1

Nonlinear dynamics and thermoacoustic intermittency of a hydrogen-powered sequential combustor DOI Creative Commons
Matteo Impagnatiello, Sergey Shcherbanev, Bayu Dharmaputra

и другие.

Combustion and Flame, Год журнала: 2025, Номер 274, С. 114008 - 114008

Опубликована: Фев. 9, 2025

Язык: Английский

Процитировано

0

Towards detailed combustion characteristics and linear stability analysis of premixed ammonia‒hydrogen‒air mixtures DOI Creative Commons
Jun Cheng, Bo Zhang

Applications in Energy and Combustion Science, Год журнала: 2025, Номер 21, С. 100325 - 100325

Опубликована: Фев. 18, 2025

Язык: Английский

Процитировано

0

A numerical study on side-wall quenching of premixed laminar flames: An analysis of ammonia/hydrogen/air mixtures DOI Creative Commons
Parsa Tamadonfar, Vili-Petteri Salomaa,

Aleksi Aukusti Rintanen

и другие.

Combustion and Flame, Год журнала: 2025, Номер 275, С. 114100 - 114100

Опубликована: Март 12, 2025

Язык: Английский

Процитировано

0

Advancing Hydrogen Development from 2015 to 2024 and Mitigating Noₓ Emissions from Hydrogen-Enriched Combustion for a Cleaner Energy Future DOI Creative Commons

Yi-Kai Chih,

S. Kuo,

Jingjie Wang

и другие.

Green energy and fuel research., Год журнала: 2025, Номер unknown

Опубликована: Март 17, 2025

Review Advancing Hydrogen Development from 2015 to 2024 and Mitigating Noₓ Emissions Hydrogen-Enriched Combustion for a Cleaner Energy Future Yi-Kai Chih 1,*, Shang-Rong Kuo 2, Jing-Jie Wang 2 1 Department of Chemical Materials Engineering, National University Kaohsiung, Kaohsiung 811, Taiwan Greenergy, Tainan, Tainan 701, * Correspondence: [email protected] or [email protected] Received: 13 December 2024; Revised: 4 March 2025; Accepted: Published: 17 2025 Abstract: This study explores hydrogen energy’s transformative role in achieving net-zero greenhouse gas emissions, focusing on mitigating nitrogen oxides (NOx), byproduct hydrogen-enriched fuel combustion. Driven by rapid growth research 2024, it highlights hydrogen’s potential address critical energy environmental challenges. production is classified into thermolysis, biophotolysis, electrolysis, photoelectrochemical processes, with distinct sources outputs. Color codes denote types: green (electrolysis using renewables), blue (carbon capture natural reforming), gray (no carbon capture), pink (nuclear-powered), turquoise (methane decomposition). By 2050, hydrogen, aligned decarbonization goals declining costs, expected dominate the market, while will act as transitional source. The paper emphasizes importance pricing, regional cost disparities, strategic investments enhance low-emission competitiveness. However, major challenge increased NOx emissions higher combustion temperatures. reviews key mitigation strategies, including hydrogen-natural blending, staged combustion, exhaust recirculation (EGR), post-combustion measures such Selective Catalytic Reduction (SCR). Among these, EGR effectively lowers peak temperatures, optimizes fuel-air mixing minimize formation. Additionally, SCR remains one most efficient solutions, reducing over 80% various applications. demonstrates how these strategies can maximize minimizing impacts.

Язык: Английский

Процитировано

0

A dual sensor for SO2 concentration and temperature based on ultraviolet differential optical absorption spectroscopy combined with convolutional neural network DOI
Bingqian Li, Hongbin Lin, Mu Li

и другие.

Measurement, Год журнала: 2025, Номер unknown, С. 117397 - 117397

Опубликована: Март 1, 2025

Язык: Английский

Процитировано

0