Research Square (Research Square), Год журнала: 2024, Номер unknown
Опубликована: Июль 4, 2024
Язык: Английский
Research Square (Research Square), Год журнала: 2024, Номер unknown
Опубликована: Июль 4, 2024
Язык: Английский
Transactions on Emerging Telecommunications Technologies, Год журнала: 2025, Номер 36(3)
Опубликована: Март 1, 2025
ABSTRACT Workload prediction is the necessary factor in cloud data center for maintaining elasticity and scalability of resources. However, accuracy workload very low, because redundancy, noise, low center. In this manuscript, Prediction Cloud Data Centers using Complex‐Valued Spatio‐Temporal Graph Convolutional Neural Network Optimized with Gazelle Optimization Algorithm (CVSTGCN‐WLP‐CDC) proposed. Initially, input collected from two standard datasets such as NASA Saskatchewan HTTP traces dataset. Then, preprocessing Multi‐Window Savitzky–Golay Filter (MWSGF) used to remove noise redundant data. The preprocessed fed CVSTGCN a dynamic environment. work, proposed Approach (GOA) enhance weight bias parameters. CVSTGCN‐WLP‐CDC technique executed efficacy based on structure evaluated several performances metrics accuracy, recall, precision, energy consumption correlation coefficient, sum index (SEI), root mean square error (RMSE), squared (MPE), percentage (PER). provides 23.32%, 28.53% 24.65% higher accuracy; 22.34%, 25.62%, 22.84% lower when comparing existing methods Artificial Intelligence augmented evolutionary approach espoused centres architecture (TCNN‐CDC‐WLP), Performance analysis machine learning centered techniques (PA‐BPNN‐CWPC), Machine effectual utilization centers (ARNN‐EU‐CDC) respectively.
Язык: Английский
Процитировано
0Research Square (Research Square), Год журнала: 2024, Номер unknown
Опубликована: Июль 4, 2024
Язык: Английский
Процитировано
0