Quantitative Assessment of Pipeline Defects Utilizing a Dual-Stage Deep Learning Framework: Integration of Pretrained Yolov8 and Cnn Architectures on Magnetic Flux Leakage Data DOI

Jialiang Xie,

Jie Yang,

Kuan Fu

и другие.

Опубликована: Янв. 1, 2024

As long-distance oil pipelines near the end of their operational tenure, propensity for leakage due to localized defects markedly increases, necessitating imperative systematic inspection and sustained maintenance efforts. Magnetic Flux Leakage (MFL) inspection, a mainstream non-destructive testing methodology, has been extensively adopted. In light voluminous nature monitoring data, deep learning computer vision technologies play pivotal role in enhancing efficiency accuracy detection. This study introduces an innovative cascading detection technique that amalgamates advanced visual recognition network YOLOv8 with novel multi-input parallel convolution structure. Through channel fusion-based image preprocessing techniques, it adeptly utilizes tri-axial MFL experimental data precisely localize pipeline defects, while concurrently predicting sizes depths defects. research meticulously investigates impact various processing techniques model architectures on defect quantifiable prediction. Following stringent validation, our method demonstrated superiority over conventional approaches quantitative assessment tasks. Moreover, proposed significantly outperforms single-input prediction networks predictive concerning highlighting its prospective utility gas through improved precision, timeliness, economic interventions.

Язык: Английский

A two-stage leak monitoring framework for water distribution networks based on acoustic signals DOI
Changjiang Wang, Xiaohong Chen,

Yuexia Xu

и другие.

Mechanical Systems and Signal Processing, Год журнала: 2025, Номер 225, С. 112275 - 112275

Опубликована: Янв. 8, 2025

Язык: Английский

Процитировано

2

Application of machine learning to leakage detection of fluid pipelines in recent years: A review and prospect DOI

Jianwu Chen,

Xiao Wu, Zhibo Jiang

и другие.

Measurement, Год журнала: 2025, Номер unknown, С. 116857 - 116857

Опубликована: Янв. 1, 2025

Язык: Английский

Процитировано

2

Assessing the reliability of natural gas pipeline system in the presence of corrosion using fuzzy fault tree DOI
Nazila Adabavazeh, Mehrdad Nikbakht, Atefeh Amindoust

и другие.

Ocean Engineering, Год журнала: 2024, Номер 311, С. 118943 - 118943

Опубликована: Авг. 20, 2024

Язык: Английский

Процитировано

8

Data augmentation using SMOTE technique: Application for prediction of burst pressure of hydrocarbons pipeline using supervised machine learning models DOI Creative Commons
Afzal Ahmed Soomro, Ainul Akmar Mokhtar, Masdi Muhammad

и другие.

Results in Engineering, Год журнала: 2024, Номер unknown, С. 103233 - 103233

Опубликована: Окт. 1, 2024

Язык: Английский

Процитировано

5

Reconstruction of 3-D pipeline defect profile based on MFL signals and hybrid neural networks DOI Creative Commons
Yinuo Chen, Zhigang Tian, Haotian Wei

и другие.

Reliability Engineering & System Safety, Год журнала: 2025, Номер unknown, С. 110890 - 110890

Опубликована: Фев. 1, 2025

Язык: Английский

Процитировано

0

Quantitative Assessment of Pipeline Defects Utilizing a Dual-Stage Deep Learning Framework: Integration of Pretrained YOLO Network and Multi-input Parallel Convolution Architectures on Magnetic Flux Leakage Data DOI Creative Commons

Jialiang Xie,

Jie Yang, Kuan Fu

и другие.

Journal of Pipeline Science and Engineering, Год журнала: 2025, Номер unknown, С. 100282 - 100282

Опубликована: Март 1, 2025

Язык: Английский

Процитировано

0

Data-driven reliability evolution prediction of underground pipeline under corrosion DOI
Hao Shen, Yihuan Wang, Wei Liu

и другие.

Reliability Engineering & System Safety, Год журнала: 2025, Номер 261, С. 111148 - 111148

Опубликована: Апрель 16, 2025

Язык: Английский

Процитировано

0

Magnetic flux leakage testing based on the dual testing probes resisting the negative effects of lift-off perturbations DOI

Shuai Hao,

Pengpeng Shi,

Sanqing Su

и другие.

Engineering Fracture Mechanics, Год журнала: 2025, Номер unknown, С. 111141 - 111141

Опубликована: Апрель 1, 2025

Язык: Английский

Процитировано

0

Intelligent framework for reliability evolution of natural gas pipelines subjected to earthquakes DOI
Yihuan Wang, Tian Xu,

Shengzhu Zhang

и другие.

Thin-Walled Structures, Год журнала: 2025, Номер unknown, С. 113414 - 113414

Опубликована: Май 1, 2025

Язык: Английский

Процитировано

0

ARTIFICIAL INTELLIGENCE BASED SOLUTIONS FOR CO2 PIPELINE MONITORING: A REVIEW DOI

Ndukaegho Sabastine Aminaho,

Efenwengbe Nicholas Aminaho,

Faith Aminaho

и другие.

Опубликована: Янв. 1, 2025

Процитировано

0