Опубликована: Янв. 1, 2024
Язык: Английский
Опубликована: Янв. 1, 2024
Язык: Английский
Polymers, Год журнала: 2025, Номер 17(4), С. 499 - 499
Опубликована: Фев. 14, 2025
The increasing complexity of polymer systems in both experimental and computational studies has led to an expanding interest machine learning (ML) methods aid data analysis, material design, predictive modeling. Among the various ML approaches, boosting methods, including AdaBoost, Gradient Boosting, XGBoost, CatBoost LightGBM, have emerged as powerful tools for tackling high-dimensional complex problems science. This paper provides overview applications science, highlighting their contributions areas such structure-property relationships, synthesis, performance prediction, characterization. By examining recent case on techniques this review aims highlight potential advancing characterization, optimization materials.
Язык: Английский
Процитировано
2Scientific Reports, Год журнала: 2025, Номер 15(1)
Опубликована: Фев. 21, 2025
Язык: Английский
Процитировано
2Waste Management, Год журнала: 2025, Номер 197, С. 14 - 24
Опубликована: Фев. 21, 2025
Язык: Английский
Процитировано
1npj Materials Degradation, Год журнала: 2025, Номер 9(1)
Опубликована: Март 24, 2025
Язык: Английский
Процитировано
1Process Safety and Environmental Protection, Год журнала: 2025, Номер unknown, С. 107060 - 107060
Опубликована: Март 1, 2025
Язык: Английский
Процитировано
1Scientific Reports, Год журнала: 2025, Номер 15(1)
Опубликована: Апрель 5, 2025
Corrosion can affect water taste, color, and odor, making it crucial to monitor control corrosion in the distribution network maintain quality standards. This study used machine learning approaches such as MARS, GMDH, MPMR model rate networks. An experimental setup was established running for data collection, where several test coupons were inserted into pipeline. A coupon weight loss method employed calculate rate. The selected site continuously monitored 315 days observe (WDN). physicochemical parameters regularly tested at Environmental Engineering Laboratory NIT Patna. Machine analyses, including multivariate adaptive regression splines (MARS), group of handling (GMDH), polynomial (MPMR), consider 13 features, pH, temperature, conductivity, total dissolved solids, alkalinity, hardness, calcium magnesium chloride, sulfate, nitrate, oxygen, time, input parameters, with output parameter. Energy dispersive X-ray (EDX) analysis revealed changes composition before after exposure: carbon content decreased from 4 3%, oxygen increased 20 31%, iron 21 60%, sulfur 3 2%, manganese 1%, zinc 49 1% by weight. performance developed assessed via metrics, error characteristic (REC) curves, comprehensive measurement (COM), ranking techniques. On basis models, proposed MARS is most accurate model, R2 = 0.9872 training 0.9741 testing phase, followed GMDH models. REC curve also demonstrates superiority lower area-over-the-curve (AOC) values (training: 0.010, testing: 0.015), 0.028, 0.024) 0.054, 0.074) With lowest COM value (0.172), outperforms indicating its superior predictive capability generalizability.
Язык: Английский
Процитировано
1Sensors, Год журнала: 2024, Номер 24(11), С. 3563 - 3563
Опубликована: Май 31, 2024
The paper introduces a computer vision methodology for detecting pitting corrosion in gas pipelines. To achieve this, dataset comprising 576,000 images of pipelines with and without was curated. A custom-designed optimized convolutional neural network (CNN) employed binary classification, distinguishing between corroded non-corroded images. This CNN architecture, despite having relatively few parameters compared to existing classifiers, achieved notably high classification accuracy 98.44%. proposed outperformed many contemporary classifiers its efficacy. By leveraging deep learning, this approach effectively eliminates the need manual inspection corrosion, thus streamlining what previously time-consuming cost-ineffective process.
Язык: Английский
Процитировано
6Engineering Failure Analysis, Год журнала: 2025, Номер unknown, С. 109603 - 109603
Опубликована: Апрель 1, 2025
Язык: Английский
Процитировано
0Scientific Reports, Год журнала: 2025, Номер 15(1)
Опубликована: Май 13, 2025
Язык: Английский
Процитировано
0Reliability Engineering & System Safety, Год журнала: 2025, Номер unknown, С. 111246 - 111246
Опубликована: Май 1, 2025
Язык: Английский
Процитировано
0