Опубликована: Янв. 1, 2024
Язык: Английский
Опубликована: Янв. 1, 2024
Язык: Английский
Journal of Loss Prevention in the Process Industries, Год журнала: 2025, Номер 94, С. 105548 - 105548
Опубликована: Янв. 7, 2025
Язык: Английский
Процитировано
0Journal of Loss Prevention in the Process Industries, Год журнала: 2025, Номер unknown, С. 105604 - 105604
Опубликована: Фев. 1, 2025
Язык: Английский
Процитировано
0Reliability Engineering & System Safety, Год журнала: 2025, Номер unknown, С. 110989 - 110989
Опубликована: Март 1, 2025
Язык: Английский
Процитировано
0Chinese Journal of Chemical Engineering, Год журнала: 2025, Номер unknown
Опубликована: Март 1, 2025
Язык: Английский
Процитировано
0Industrial & Engineering Chemistry Research, Год журнала: 2025, Номер unknown
Опубликована: Апрель 2, 2025
Язык: Английский
Процитировано
0Processes, Год журнала: 2025, Номер 13(1), С. 118 - 118
Опубликована: Янв. 5, 2025
Exploration and production activities in deep-water oil gas reservoirs can directly impact the surrounding ecosystems. Thus, a tool capable of measuring leaks based on surveillance images, especially pre-mature stages, is great importance for ensuring safety environmental protection. In present work, Convolutional Neural Network (U-Net) applied to leak images using transfer learning hyperparameter optimization, aiming predict bubble diameter flow rate. The data were extracted from reduced model experiment, with total 77,676 frames processed, indicating Big Data context. results agreed obtained laboratory: rate prediction, coefficients determination by optimization were, respectively, 0.938 0.941. Therefore, this novel methodology has potential applications industry, which captured camera are measured, supporting decision-making early stages building framework mitigation strategy industrial environments.
Язык: Английский
Процитировано
0Water, Год журнала: 2024, Номер 16(13), С. 1850 - 1850
Опубликована: Июнь 28, 2024
The terminal settling velocity of microplastics plays a vital role in the physical behavior microplastics, and is related to migration fate these ocean. At present, mostly calculated by formulae, which also leads fewer studies on use machine-learning models predict its this field. This study fills gap studying prediction compares it with traditional formula calculation method. evaluates three models, namely, random forest, linear regression, back propagation neural network. results show that are more accurate than those calculations, an accuracy increase 12.79% (random forest), 9.3% (linear regression), 13.92% (back network), respectively. same time, according study, forest better other mean absolute error root square evaluation indicators, only 0.0036 0.0047. paper proposes methods prove effect machine learning much thereby improving shortcomings provides reliable data support for water bodies.
Язык: Английский
Процитировано
2Journal of Loss Prevention in the Process Industries, Год журнала: 2024, Номер 92, С. 105477 - 105477
Опубликована: Ноя. 2, 2024
Язык: Английский
Процитировано
1International Journal of Hydrogen Energy, Год журнала: 2024, Номер 97, С. 1287 - 1301
Опубликована: Дек. 5, 2024
Язык: Английский
Процитировано
1Process Safety and Environmental Protection, Год журнала: 2024, Номер 191, С. 1181 - 1192
Опубликована: Сен. 6, 2024
Язык: Английский
Процитировано
0