Materials and Corrosion, Год журнала: 2025, Номер unknown
Опубликована: Март 23, 2025
ABSTRACT This study aims to construct a prediction model for the internal corrosion rate of offshore pipelines in CO 2 environments, with intention providing effective and protection strategies oil gas industry. By conducting investigative analysis integrating experimental data, principal component (PCA) was employed extract primary influencing factors, which were used as input variables support vector regression (SVR) output variable. The particle swarm optimization (PSO) algorithm utilized optimize hyperparameters model, enhancing accuracy. results indicate that first eight components account 95.9% cumulative contribution, optimized SVR achieved correlation coefficient (R ) exceeding 0.90. Compared other models methods, PCA PSO effectively predicts pipelines, offering theoretical protection.
Язык: Английский