Engineering Applications of Artificial Intelligence, Год журнала: 2024, Номер 133, С. 108487 - 108487
Опубликована: Апрель 26, 2024
Язык: Английский
Engineering Applications of Artificial Intelligence, Год журнала: 2024, Номер 133, С. 108487 - 108487
Опубликована: Апрель 26, 2024
Язык: Английский
CIRP journal of manufacturing science and technology, Год журнала: 2022, Номер 40, С. 75 - 101
Опубликована: Дек. 2, 2022
Язык: Английский
Процитировано
167Robotics and Computer-Integrated Manufacturing, Год журнала: 2022, Номер 78, С. 102412 - 102412
Опубликована: Июль 6, 2022
Язык: Английский
Процитировано
137Journal of Manufacturing Systems, Год журнала: 2023, Номер 67, С. 155 - 173
Опубликована: Янв. 28, 2023
Язык: Английский
Процитировано
115Robotics and Computer-Integrated Manufacturing, Год журнала: 2022, Номер 77, С. 102324 - 102324
Опубликована: Март 3, 2022
Язык: Английский
Процитировано
75IEEE Transactions on Evolutionary Computation, Год журнала: 2023, Номер 28(1), С. 147 - 167
Опубликована: Март 10, 2023
Job shop scheduling (JSS) is a process of optimizing the use limited resources to improve production efficiency. JSS has wide range applications, such as order picking in warehouse and vaccine delivery under pandemic. In real-world environment often complex due dynamic events, job arrivals over time machine breakdown. Scheduling heuristics, e.g., dispatching rules, have been popularly used prioritize candidates machines manufacturing make good schedules efficiently. Genetic programming (GP), shown its superiority learning heuristics for automatically flexible representation. This survey first provides comprehensive discussions recent designs GP algorithms on different types JSS. addition, we notice that years, techniques, feature selection multitask learning, adapted effectiveness efficiency heuristic design with GP. However, there no discuss strengths weaknesses these approaches. To fill this gap, article techniques automatic current issues challenges are discussed identify promising areas future.
Язык: Английский
Процитировано
64Engineering Applications of Artificial Intelligence, Год журнала: 2024, Номер 135, С. 108789 - 108789
Опубликована: Июль 4, 2024
Язык: Английский
Процитировано
62Swarm and Evolutionary Computation, Год журнала: 2024, Номер 86, С. 101538 - 101538
Опубликована: Март 11, 2024
Язык: Английский
Процитировано
35Computers & Industrial Engineering, Год журнала: 2024, Номер 196, С. 110484 - 110484
Опубликована: Авг. 18, 2024
Язык: Английский
Процитировано
32Computers & Industrial Engineering, Год журнала: 2024, Номер 189, С. 109917 - 109917
Опубликована: Фев. 2, 2024
Язык: Английский
Процитировано
27Journal of Industrial Information Integration, Год журнала: 2024, Номер 38, С. 100582 - 100582
Опубликована: Фев. 9, 2024
Smart manufacturing scheduling (SMS) requires a high degree of flexibility to successfully cope with changes in operational decision level planning processes today's production environments, which are usually subject uncertainty. In such unique and complex scenario as the real job shop, modelling SMS Markov process (MDP), its approach by deep reinforcement learning (DRL), is research field growing interest given characteristics. It allows us consider achieving levels promoting automation, autonomy making, ability act time when faced disturbances disruptions highly dynamic environment. This paper addresses problem quasi-realistic shop environment characterised machines receiving jobs from buffers that accumulate numerous using wide variety parts multimachine routes diverse number operation phases developing digital twin based on MDP DRL methodology. approached by: OpenAI Gym; designing an observation space 18 features; action composed three priority heuristic rules; shaping single reward function multi-objective characteristic; implementation proximal policy optimisation (PPO) algorithm Stable Baselines 3 library. approach, dubbed smart (JS-SMS), deterministic formulation implementation. The model subjected validation comparing it several best-known rules. main findings this methodology allow replicate, great extent, positive aspects rules mitigate negative ones, achieves more balanced behaviour most measures established performance indicators outperforms perspective. Finally, further oriented stochastic approaches address reality Industry 4.0 context.
Язык: Английский
Процитировано
20