A Double Deep Q-Network framework for a flexible job shop scheduling problem with dynamic job arrivals and urgent job insertions DOI
Shaojun Lu, Yongqi Wang, Min Kong

и другие.

Engineering Applications of Artificial Intelligence, Год журнала: 2024, Номер 133, С. 108487 - 108487

Опубликована: Апрель 26, 2024

Язык: Английский

Deep reinforcement learning in smart manufacturing: A review and prospects DOI
Chengxi Li, Pai Zheng, Yue Yin

и другие.

CIRP journal of manufacturing science and technology, Год журнала: 2022, Номер 40, С. 75 - 101

Опубликована: Дек. 2, 2022

Язык: Английский

Процитировано

167

Dynamic job shop scheduling based on deep reinforcement learning for multi-agent manufacturing systems DOI
Yi Zhang, Haihua Zhu, Dunbing Tang

и другие.

Robotics and Computer-Integrated Manufacturing, Год журнала: 2022, Номер 78, С. 102412 - 102412

Опубликована: Июль 6, 2022

Язык: Английский

Процитировано

137

Flexible job shop scheduling problem under Industry 5.0: A survey on human reintegration, environmental consideration and resilience improvement DOI
Candice Destouet, Houda Tlahig, Belgacem Bettayeb

и другие.

Journal of Manufacturing Systems, Год журнала: 2023, Номер 67, С. 155 - 173

Опубликована: Янв. 28, 2023

Язык: Английский

Процитировано

115

Solving job scheduling problems in a resource preemption environment with multi-agent reinforcement learning DOI
Xiaohan Wang, Zhang Li, Ting-Yu Lin

и другие.

Robotics and Computer-Integrated Manufacturing, Год журнала: 2022, Номер 77, С. 102324 - 102324

Опубликована: Март 3, 2022

Язык: Английский

Процитировано

75

Survey on Genetic Programming and Machine Learning Techniques for Heuristic Design in Job Shop Scheduling DOI
Fangfang Zhang, Yi Mei, Su Nguyen

и другие.

IEEE Transactions on Evolutionary Computation, Год журнала: 2023, Номер 28(1), С. 147 - 167

Опубликована: Март 10, 2023

Job shop scheduling (JSS) is a process of optimizing the use limited resources to improve production efficiency. JSS has wide range applications, such as order picking in warehouse and vaccine delivery under pandemic. In real-world environment often complex due dynamic events, job arrivals over time machine breakdown. Scheduling heuristics, e.g., dispatching rules, have been popularly used prioritize candidates machines manufacturing make good schedules efficiently. Genetic programming (GP), shown its superiority learning heuristics for automatically flexible representation. This survey first provides comprehensive discussions recent designs GP algorithms on different types JSS. addition, we notice that years, techniques, feature selection multitask learning, adapted effectiveness efficiency heuristic design with GP. However, there no discuss strengths weaknesses these approaches. To fill this gap, article techniques automatic current issues challenges are discussed identify promising areas future.

Язык: Английский

Процитировано

64

A systematic review and meta-analysis of machine learning, deep learning, and ensemble learning approaches in predicting EV charging behavior DOI
Elaheh Yaghoubi, Elnaz Yaghoubi, Ahmed A. Khamees

и другие.

Engineering Applications of Artificial Intelligence, Год журнала: 2024, Номер 135, С. 108789 - 108789

Опубликована: Июль 4, 2024

Язык: Английский

Процитировано

62

A dual population collaborative genetic algorithm for solving flexible job shop scheduling problem with AGV DOI
Xiaoqing Han, Weiyao Cheng, Leilei Meng

и другие.

Swarm and Evolutionary Computation, Год журнала: 2024, Номер 86, С. 101538 - 101538

Опубликована: Март 11, 2024

Язык: Английский

Процитировано

35

A Learning-Driven Multi-Objective cooperative artificial bee colony algorithm for distributed flexible job shop scheduling problems with preventive maintenance and transportation operations DOI

Zhengpei Zhang,

Yaping Fu, Kaizhou Gao

и другие.

Computers & Industrial Engineering, Год журнала: 2024, Номер 196, С. 110484 - 110484

Опубликована: Авг. 18, 2024

Язык: Английский

Процитировано

32

Deep reinforcement learning-based memetic algorithm for energy-aware flexible job shop scheduling with multi-AGV DOI

Fayong Zhang,

Rui Li, Wenyin Gong

и другие.

Computers & Industrial Engineering, Год журнала: 2024, Номер 189, С. 109917 - 109917

Опубликована: Фев. 2, 2024

Язык: Английский

Процитировано

27

Job shop smart manufacturing scheduling by deep reinforcement learning DOI Creative Commons
Julio C. Serrano-Ruiz, Josefa Mula, Raúl Poler

и другие.

Journal of Industrial Information Integration, Год журнала: 2024, Номер 38, С. 100582 - 100582

Опубликована: Фев. 9, 2024

Smart manufacturing scheduling (SMS) requires a high degree of flexibility to successfully cope with changes in operational decision level planning processes today's production environments, which are usually subject uncertainty. In such unique and complex scenario as the real job shop, modelling SMS Markov process (MDP), its approach by deep reinforcement learning (DRL), is research field growing interest given characteristics. It allows us consider achieving levels promoting automation, autonomy making, ability act time when faced disturbances disruptions highly dynamic environment. This paper addresses problem quasi-realistic shop environment characterised machines receiving jobs from buffers that accumulate numerous using wide variety parts multimachine routes diverse number operation phases developing digital twin based on MDP DRL methodology. approached by: OpenAI Gym; designing an observation space 18 features; action composed three priority heuristic rules; shaping single reward function multi-objective characteristic; implementation proximal policy optimisation (PPO) algorithm Stable Baselines 3 library. approach, dubbed smart (JS-SMS), deterministic formulation implementation. The model subjected validation comparing it several best-known rules. main findings this methodology allow replicate, great extent, positive aspects rules mitigate negative ones, achieves more balanced behaviour most measures established performance indicators outperforms perspective. Finally, further oriented stochastic approaches address reality Industry 4.0 context.

Язык: Английский

Процитировано

20