Investigation on matching of individualised requirements and shared manufacturing resources in the context of shared factory runtime DOI
Pulin Li, S. C. Shen, Tingting Hou

и другие.

International Journal of Production Research, Год журнала: 2024, Номер unknown, С. 1 - 21

Опубликована: Ноя. 22, 2024

Shared Manufacturing (SharedM) empowers individuals to engage in manufacturing via order-driven, resource-sharing processes, embodying the principles of Industry 5.0 and a human-centric approach. This study tackles challenges requirement-resource matching realise Production Planning Scheduling (PP&S), stemming from conflicts distribution ownership shared Resources (MRs). We introduce factory-level runtime framework alongside self-organising redundant algorithm based on sample average approximation efficiently manage MRs individualised orders. Then, an industrial case illustrates application modelling requirements, generation final Gantt chart. The findings demonstrate that proposed factory can align idle with personalised consumer demands effectively. paper presents viable solution for implementing factories settings, providing valuable insights into social manufacturing, SharedM, novel paradigms focused values.

Язык: Английский

A disjunctive graph-based metaheuristic for flexible job-shop scheduling problems considering fixture shortages in customized manufacturing systems DOI
Jiahang Li, Qihao Liu, Cuiyu Wang

и другие.

Robotics and Computer-Integrated Manufacturing, Год журнала: 2025, Номер 95, С. 102981 - 102981

Опубликована: Фев. 20, 2025

Язык: Английский

Процитировано

4

Leveraging digital twin into dynamic production scheduling: A review DOI

Nada Ouahabi,

Ahmed Chebak,

Oulaïd Kamach

и другие.

Robotics and Computer-Integrated Manufacturing, Год журнала: 2024, Номер 89, С. 102778 - 102778

Опубликована: Май 4, 2024

Язык: Английский

Процитировано

16

A hybrid simheuristic algorithm for solving bi-objective stochastic flexible job shop scheduling problems DOI Creative Commons

Saman Nessari,

Reza Tavakkoli‐Moghaddam, Hessam Bakhshi-Khaniki

и другие.

Decision Analytics Journal, Год журнала: 2024, Номер 11, С. 100485 - 100485

Опубликована: Май 29, 2024

The flexible job shop scheduling problem (FJSSP) is a complex optimization challenge that plays crucial role in enhancing productivity and efficiency modern manufacturing systems, aimed at optimizing the allocation of jobs to variable set machines. This paper introduces an algorithm tackle FJSSP by minimizing makespan total weighted earliness tardiness under uncertainty. hybrid effectively addresses complexities stochastic multi-objective integrating equilibrium optimizer (EO) as initial solutions generator, Non-dominated sorting genetic II (NSGA-II), simulation techniques. algorithm's effectiveness validated showcasing specific instances delivering decision results for optimal across varying levels Results reveal consistent superiority managing parameters various scales, achieving lower improved Pareto front quality compared existing methods. Particularly notable faster convergence robust performance, statistical Wilcoxon test, which confirms its reliability efficacy handling dynamic situations. These findings underscore potential providing flexible, solutions. proposed unique balance exploitative explorative capabilities within framework enables effective uncertainty FJSSP, offering flexibility customization adaptable environments.

Язык: Английский

Процитировано

6

Dynamic-multi-task-assisted evolutionary algorithm for constrained multi-objective optimization DOI

Qianlin Ye,

Wanliang Wang, Guoqing Li

и другие.

Swarm and Evolutionary Computation, Год журнала: 2024, Номер 90, С. 101683 - 101683

Опубликована: Авг. 10, 2024

Язык: Английский

Процитировано

4

Digital twin-based smart shop-floor management and control: A review DOI
Cunbo Zhuang, Lei Zhang, Shimin Liu

и другие.

Advanced Engineering Informatics, Год журнала: 2025, Номер 65, С. 103102 - 103102

Опубликована: Янв. 9, 2025

Язык: Английский

Процитировано

0

Production-logistics collaborative scheduling in dynamic flexible job shops using nested-hierarchical deep reinforcement learning DOI
Jiaxuan Shi, Fei Qiao, Juan Liu

и другие.

Advanced Engineering Informatics, Год журнала: 2025, Номер 65, С. 103195 - 103195

Опубликована: Март 4, 2025

Язык: Английский

Процитировано

0

Industrial applications of digital twins: A systematic investigation based on bibliometric analysis DOI
Jiangzhuo Ren,

Rafiq Ahmad,

Dabing Li

и другие.

Advanced Engineering Informatics, Год журнала: 2025, Номер 65, С. 103264 - 103264

Опубликована: Март 13, 2025

Язык: Английский

Процитировано

0

Dueling double deep Q-network-based stamping resources intelligent scheduling for automobile manufacturing in cloud manufacturing environment DOI
Yanjuan Hu, Leiting Pan, Ziang Wen

и другие.

Applied Intelligence, Год журнала: 2025, Номер 55(7)

Опубликована: Апрель 15, 2025

Язык: Английский

Процитировано

0

Virtual workflows and adaptive optimization scheduling of production process with feedback constraints DOI
Zhen Quan, Yan Wang, Xiang Liu

и другие.

Engineering Applications of Artificial Intelligence, Год журнала: 2025, Номер 152, С. 110728 - 110728

Опубликована: Апрель 16, 2025

Язык: Английский

Процитировано

0

Digital twin driven dynamic scheduling of discrete manufacturing workshop with transportation resource constraint using multi-agent deep reinforcement learning DOI
S. Geng, Shaohua Huang, Yu Guo

и другие.

Robotics and Computer-Integrated Manufacturing, Год журнала: 2025, Номер 95, С. 103042 - 103042

Опубликована: Май 1, 2025

Язык: Английский

Процитировано

0