GPB and BAC: two novel models towards building an intelligent motor fault maintenance question answering system DOI Creative Commons
Pin Lyu, Jingqi Fu, Chao Liu

и другие.

Journal of Engineering Design, Год журнала: 2024, Номер unknown, С. 1 - 21

Опубликована: Апрель 12, 2024

Generally, the existing methods for constructing a knowledge graph used in question answering system adopted two different models respectively, one is identifying entities, and other extracting relationships between entities. However, this method may reduce quality of because it very difficult to keep contextual information consistent with same entities models. To address issue, paper proposes model called GPB (GlobalPointer + BiLSTM) which integrates BiLSTM into GlobalPointer through concatenation operations simultaneously guarantee rationality identified In addition, enhance user experience using an intelligent motor fault maintenance system, BAC (BiLSTM Attention CRF) proposed identify named questions, BERT-wwm classify intentions improve answers. Finally, verify advantages BAC, comparative experiments real application effects developed are demonstrated on our built dataset. The experimental results indicate that constructed provide engineers high-quality services.

Язык: Английский

Towards Cognitive Intelligence-enabled Product Design: The Evolution, State-of-the-art, and Future of AI-enabled Product Design DOI
Zuoxu Wang,

Xinxin Liang,

Mingrui Li

и другие.

Journal of Industrial Information Integration, Год журнала: 2024, Номер unknown, С. 100759 - 100759

Опубликована: Дек. 1, 2024

Язык: Английский

Процитировано

26

An LLM-based vision and language cobot navigation approach for Human-centric Smart Manufacturing DOI
Tian Wang, Junming Fan, Pai Zheng

и другие.

Journal of Manufacturing Systems, Год журнала: 2024, Номер 75, С. 299 - 305

Опубликована: Май 3, 2024

Язык: Английский

Процитировано

19

Integrating large language model and digital twins in the context of industry 5.0: Framework, challenges and opportunities DOI
Chong Chen,

K Zhao,

Jiewu Leng

и другие.

Robotics and Computer-Integrated Manufacturing, Год журнала: 2025, Номер 94, С. 102982 - 102982

Опубликована: Фев. 10, 2025

Язык: Английский

Процитировано

4

Combining ChatGPT and knowledge graph for explainable machine learning-driven design: a case study DOI Creative Commons
Xin Hu, Ang Liu, Yun Dai

и другие.

Journal of Engineering Design, Год журнала: 2024, Номер unknown, С. 1 - 23

Опубликована: Май 20, 2024

Machine learning has been widely used in design activities, enabling more informed decision-making. However, high-performance machine models, often referred to as 'black-box', result a lack of explainability regarding predictions. The absence erodes the trust between designers and these models hinders human-machine collaboration for desirable decisions. Explainable AI focuses on creating explanations that are accessible comprehensible stakeholders, thereby improving explainability. A recent advancement field explainable involves leveraging domain-specific knowledge via graph. Additionally, advent large language like ChatGPT, acclaimed their ability output domain knowledge, perform complex processing, support seamless end-user interaction, potential expand horizons AI. Inspired by developments, we propose novel hybrid method synergizes ChatGPT graph augment post-hoc context. outcome is generation contextual meaningful explanations, with added possibility further interaction uncover deeper insights. effectiveness proposed illustrated through case study customer segmentation.

Язык: Английский

Процитировано

10

Leveraging large language models for Human-Machine collaborative troubleshooting of complex industrial equipment faults DOI

Sijie Wen,

Li Fei, Weibin Zhuang

и другие.

Advanced Engineering Informatics, Год журнала: 2025, Номер 65, С. 103235 - 103235

Опубликована: Март 10, 2025

Язык: Английский

Процитировано

2

Enhancing mechanical and bioinspired materials through generative AI approaches DOI Creative Commons
Silvia Badini, Stefano Regondi, Raffaele Pugliese

и другие.

Next Materials, Год журнала: 2024, Номер 6, С. 100275 - 100275

Опубликована: Июль 31, 2024

Язык: Английский

Процитировано

8

A survey on potentials, pathways and challenges of large language models in new-generation intelligent manufacturing DOI
Chao Zhang, Qingfeng Xu,

Yongrui Yu

и другие.

Robotics and Computer-Integrated Manufacturing, Год журнала: 2024, Номер 92, С. 102883 - 102883

Опубликована: Сен. 26, 2024

Язык: Английский

Процитировано

8

Digital twin-based smart shop-floor management and control: A review DOI
Cunbo Zhuang, Lei Zhang, Shimin Liu

и другие.

Advanced Engineering Informatics, Год журнала: 2025, Номер 65, С. 103102 - 103102

Опубликована: Янв. 9, 2025

Язык: Английский

Процитировано

1

A blockchain-based LLM-driven energy-efficient scheduling system towards distributed multi-agent manufacturing scenario of new energy vehicles within the circular economy DOI
Changchun Liu, Qingwei Nie

Computers & Industrial Engineering, Год журнала: 2025, Номер unknown, С. 110889 - 110889

Опубликована: Янв. 1, 2025

Язык: Английский

Процитировано

1

A New Era in Human Factors Engineering: A Survey of the Applications and Prospects of Large Multimodal Models DOI
Fan Li, Han Su, Ching‐Hung Lee

и другие.

International Journal of Human-Computer Interaction, Год журнала: 2025, Номер unknown, С. 1 - 14

Опубликована: Янв. 19, 2025

Язык: Английский

Процитировано

1