Energy and Buildings, Год журнала: 2024, Номер 316, С. 114372 - 114372
Опубликована: Июнь 1, 2024
Язык: Английский
Energy and Buildings, Год журнала: 2024, Номер 316, С. 114372 - 114372
Опубликована: Июнь 1, 2024
Язык: Английский
Applied Energy, Год журнала: 2024, Номер 359, С. 122709 - 122709
Опубликована: Фев. 2, 2024
Язык: Английский
Процитировано
69Applied Energy, Год журнала: 2024, Номер 358, С. 122671 - 122671
Опубликована: Янв. 21, 2024
Язык: Английский
Процитировано
19Systems and Soft Computing, Год журнала: 2024, Номер 6, С. 200084 - 200084
Опубликована: Фев. 23, 2024
Accurate short-term photovoltaic (PV) power forecasting can reduce the un- certainty of PV generation, which is crucial for grid operation as well energy dispatch. Considering influence seasonal and meteorological factors on prediction, a predic- tion method based similarity day sparrow search algo- rithm bi-directional long memory network combination (SSA-BiLSTM) proposed. Firstly, correlation between generation calculated by using Pearson coefficients, getting strongly correlated affecting generation; afterwards,the historical data are clustered fuzzy C-means clustering to achieve similar clustering; then, best selected from according test features data, Forming training set with original BiLSTM network. SSA algorithm was used find optimal parameters. Finally, Using parameters construct prediction. The experiments were conducted plant in Xinjiang, also compared existing prediction algorithms.The results show that accuracy different weather conditions 33.1 %, 31.9 % 24.1 higher than under same intelligent optimization neural networks, 27.9 24.7 18.0 algorithms Therefore, this paper has better seasons conditions.
Язык: Английский
Процитировано
17Energy, Год журнала: 2024, Номер 304, С. 132188 - 132188
Опубликована: Июнь 24, 2024
Язык: Английский
Процитировано
11Journal of Energy Storage, Год журнала: 2025, Номер 114, С. 115850 - 115850
Опубликована: Фев. 22, 2025
Язык: Английский
Процитировано
1Heliyon, Год журнала: 2024, Номер 10(13), С. e33419 - e33419
Опубликована: Июнь 27, 2024
Язык: Английский
Процитировано
8Applied Energy, Год журнала: 2024, Номер 373, С. 123825 - 123825
Опубликована: Июль 10, 2024
Язык: Английский
Процитировано
8Frontiers in Environmental Science, Год журнала: 2023, Номер 11
Опубликована: Ноя. 2, 2023
Globally, communities and governments face growing challenges from an increase in natural disasters worsening weather extremes. Precision disaster preparation is crucial responding to these issues. The revolutionary influence that machine learning algorithms have strengthening catastrophe response systems thoroughly explored this paper. Beyond a basic summary, the findings of our study are striking demonstrate sophisticated powers forecasting variety patterns anticipating range catastrophes, including heat waves, droughts, floods, hurricanes, more. We get practical insights into complexities applications, which support enhanced effectiveness predictive models preparedness. paper not only explains theoretical foundations but also presents proof significant benefits provide. As result, results open door for governments, businesses, people make wise decisions. These accurate predictions catastrophes emerging may be used implement pre-emptive actions, eventually saving lives reducing severity damage.
Язык: Английский
Процитировано
15Applied Energy, Год журнала: 2024, Номер 359, С. 122719 - 122719
Опубликована: Янв. 31, 2024
Язык: Английский
Процитировано
5Archives of Computational Methods in Engineering, Год журнала: 2024, Номер unknown
Опубликована: Май 8, 2024
Abstract Novel algorithms and techniques are being developed for design, forecasting maintenance in photovoltaic due to high computational costs volume of data. Machine Learning, artificial intelligence provide automated, intelligent history-based solutions complex scenarios. This paper aims identify through a systematic review analysis the role systems control. The main novelty this work is exploration methodological insights three different ways. first approach investigate applicability systems. second study data operations, failure predictors, assessment, safety response, installation issues, monitoring etc. All these factors discussed along with results after applying on systems, exploring challenges limitations considering wide variety latest related manuscripts.
Язык: Английский
Процитировано
5