Thermal Science and Engineering Progress, Год журнала: 2024, Номер 55, С. 102932 - 102932
Опубликована: Сен. 25, 2024
Язык: Английский
Thermal Science and Engineering Progress, Год журнала: 2024, Номер 55, С. 102932 - 102932
Опубликована: Сен. 25, 2024
Язык: Английский
Applied Thermal Engineering, Год журнала: 2025, Номер unknown, С. 125605 - 125605
Опубликована: Янв. 1, 2025
Язык: Английский
Процитировано
4Energy Conversion and Management, Год журнала: 2024, Номер 307, С. 118373 - 118373
Опубликована: Март 30, 2024
Язык: Английский
Процитировано
12Natural Resources Research, Год журнала: 2024, Номер 33(5), С. 2037 - 2062
Опубликована: Июнь 19, 2024
Язык: Английский
Процитировано
10Applied Thermal Engineering, Год журнала: 2024, Номер 257, С. 124231 - 124231
Опубликована: Авг. 24, 2024
Язык: Английский
Процитировано
7Archives of Computational Methods in Engineering, Год журнала: 2024, Номер unknown
Опубликована: Май 27, 2024
Язык: Английский
Процитировано
6Applied Thermal Engineering, Год журнала: 2024, Номер 248, С. 123143 - 123143
Опубликована: Апрель 8, 2024
Язык: Английский
Процитировано
3IEEE Access, Год журнала: 2024, Номер 12, С. 76515 - 76531
Опубликована: Янв. 1, 2024
Wireless Sensor Networks (WSN) are adopting low-power wide area networks (LPWAN), such as long-range (LoRa) networks, to increase communication standards. LoRa has been used gather sensor data for many applications, environmental monitoring. The existing system faces degradation in network performance because of interference and congestion with the development Internet-of-Things (IoT) devices. More than device parameters algorithms must be improved large IoT applications. In massive systems, resource allocation is effectively performed using new reinforcement learning machine approaches. These approaches have proven quite effective. Hence, this work implements an efficient optimal scheme effective transmission over minor power requirement aid Deep Adaptive Reinforcement Learning (DARL). required minimize while transmitting estimated help DARL model. variables optimally selected by a optimization algorithm named Integrated Remora Lotus Effect Optimization Algorithm (IR-LEOA) that executed combining (ROA) (LEA). parameters, power, channel, spreading factor, tuned same IR-LEOA. server matched agents generated Then, given network's terminal hub after generated. Throughput, energy efficiency, latency, rate analyzed strategy. effectiveness model proved conducting extensive experimentation.
Язык: Английский
Процитировано
3Energy Reports, Год журнала: 2025, Номер 13, С. 1525 - 1536
Опубликована: Янв. 18, 2025
Язык: Английский
Процитировано
0Renewable Energy, Год журнала: 2025, Номер unknown, С. 122532 - 122532
Опубликована: Фев. 1, 2025
Язык: Английский
Процитировано
0Applied Sciences, Год журнала: 2025, Номер 15(5), С. 2702 - 2702
Опубликована: Март 3, 2025
The microgrid is a small-scale, independent power system that plays crucial role in the transition to carbon-neutral energy systems. Combined heat and (CHP) systems with storage reduce waste within microgrids, enhancing utilization efficiency. key challenge for integrated combined determining optimal configuration operation duration under different scenarios meet users’ electricity demands while minimizing both economic environmental costs. Thus, this paper presents bi-objective mathematical model solve scheduling problem of microgrid. Long Short-Term Memory–Parallel Multi-Objective Energy Valley Optimizer (LSTM-PMOEVO) framework incorporates load prediction using LSTM planning solved via PMOEVO. These strategies address challenges posed by unpredictable fluctuations complexity solving such Finally, public dataset was utilized experiments verify performance proposed algorithm. Comparisons discussions show optimization significantly improve PMOEVO, demonstrating marked advantages over six classical algorithms. In conclusion, PMOEVO developed performs excellently Scheduling Problem Biomass-Hybrid microgrids considering uncertainty. work presented provides new solution microgrid-scheduling future research, will be further advanced application real-world scenarios.
Язык: Английский
Процитировано
0