Water Resources Management, Год журнала: 2024, Номер 38(9), С. 3297 - 3312
Опубликована: Март 19, 2024
Язык: Английский
Water Resources Management, Год журнала: 2024, Номер 38(9), С. 3297 - 3312
Опубликована: Март 19, 2024
Язык: Английский
Energy Conversion and Management, Год журнала: 2024, Номер 321, С. 119094 - 119094
Опубликована: Сен. 25, 2024
Язык: Английский
Процитировано
5Renewable Energy, Год журнала: 2024, Номер unknown, С. 122191 - 122191
Опубликована: Дек. 1, 2024
Язык: Английский
Процитировано
5Applied Energy, Год журнала: 2025, Номер 382, С. 125301 - 125301
Опубликована: Янв. 8, 2025
Язык: Английский
Процитировано
0Electronic Research Archive, Год журнала: 2025, Номер 33(1), С. 294 - 326
Опубликована: Янв. 1, 2025
<p>Accurate interval prediction of wind speed plays a vital role in ensuring the efficiency and stability power generation. Due to insufficient traditional methods for mining nonlinear features, this paper, novel method was proposed by combining improved wavelet threshold deep learning (BiTCN-BiGRU) with nutcracker optimization algorithm (NOA). First, NOA used optimize transform (WT) BiTCN-BiGRU. Second, we applied NOA-WT smooth data. Then, capture features time series, phase space reconstruction (PSR) utilized identify chaotic characteristics processed Finally, NOA-BiTCN-BiGRU model built perform prediction. Under same hyperparameters network structure settings, comparison other showed that coverage probability (PICP) mean width (PIMW) NOA-WT-BiTCN-BiGRU achieves best balance, good accuracy generalization performance. This research can provide reference guidance time-series real world.</p>
Язык: Английский
Процитировано
0Results in Engineering, Год журнала: 2025, Номер unknown, С. 104267 - 104267
Опубликована: Фев. 1, 2025
Язык: Английский
Процитировано
0Опубликована: Янв. 1, 2025
Язык: Английский
Процитировано
0Energies, Год журнала: 2025, Номер 18(5), С. 1136 - 1136
Опубликована: Фев. 25, 2025
Accurate and reliable wind speed prediction plays a significant role in ensuring the reasonable scheduling of power resources. However, sequences often exhibit complex characteristics such as instability volatility, which create substantial challenges for prediction. In order to cope with these challenges, multi-step method based on secondary decomposition (SD) techniques deep learning models is proposed this paper. First, original signal was decomposed into multiple by using two techniques, multi-scale wavelet spectrum analysis (MWPSA) variational mode (VMD). Second, model constructed combining convolutional neural networks (CNNs), bidirectional long short-term memory (BiLSTM) networks, attention mechanism perform predicting each sequence, parameters were optimized particle swarm optimization (PSO) algorithm. Ultimately, results from all combined generate final The predictive performance evaluated real data collected farm China. Experimental show that significantly outperforms other comparison prediction, highlights its accuracy reliability.
Язык: Английский
Процитировано
0Energy Conversion and Management, Год журнала: 2025, Номер 330, С. 119673 - 119673
Опубликована: Фев. 27, 2025
Язык: Английский
Процитировано
0Sustainability, Год журнала: 2025, Номер 17(7), С. 3239 - 3239
Опубликована: Апрель 5, 2025
Accurate interval forecasting of wind power is crucial for ensuring the safe, stable, and cost-effective operation grids. In this paper, we propose a hybrid deep learning model day-ahead forecasting. The begins by utilizing Gaussian mixture (GMM) to cluster daily data with similar distribution patterns. To optimize input features, feature selection (FS) method applied remove irrelevant data. empirical wavelet transform (EWT) then employed decompose both numerical weather prediction (NWP) into frequency components, effectively isolating high-frequency components that capture inherent randomness volatility A convolutional neural network (CNN) used extract spatial correlations meteorological while bidirectional gated recurrent unit (BiGRU) captures temporal dependencies within sequence. further enhance accuracy, multi-head self-attention mechanism (MHSAM) incorporated assign greater weight most influential elements. This leads development based on GMM-FS-EWT-CNN-BiGRU-MHSAM. proposed validated through comparison benchmark demonstrates superior performance. Furthermore, forecasts generated using NPKDE shows new achieves higher accuracy.
Язык: Английский
Процитировано
0Renewable Energy, Год журнала: 2025, Номер unknown, С. 123142 - 123142
Опубликована: Апрель 1, 2025
Язык: Английский
Процитировано
0