A Novel Coupled Model for Monthly Rainfall Prediction Based on ESMD-EWT-SVD-LSTM DOI
Ziyu Li, Xianqi Zhang

Water Resources Management, Год журнала: 2024, Номер 38(9), С. 3297 - 3312

Опубликована: Март 19, 2024

Язык: Английский

BiLSTM-InceptionV3-Transformer-fully-connected model for short-term wind power forecasting DOI
Linfei Yin,

Yujie Sun

Energy Conversion and Management, Год журнала: 2024, Номер 321, С. 119094 - 119094

Опубликована: Сен. 25, 2024

Язык: Английский

Процитировано

5

A hybrid model based on CapSA-VMD-ResNet-GRU-attention mechanism for ultra-short-term and short-term wind speed prediction DOI
Donghan Geng, Yongkang Zhang, Yunlong Zhang

и другие.

Renewable Energy, Год журнала: 2024, Номер unknown, С. 122191 - 122191

Опубликована: Дек. 1, 2024

Язык: Английский

Процитировано

5

Incorporating key features from structured and unstructured data for enhanced carbon trading price forecasting with interpretability analysis DOI

Ming Jiang,

Jinxing Che, Shuying Li

и другие.

Applied Energy, Год журнала: 2025, Номер 382, С. 125301 - 125301

Опубликована: Янв. 8, 2025

Язык: Английский

Процитировано

0

Uncertainty prediction of wind speed based on improved multi-strategy hybrid models DOI Creative Commons
Xinyi Xu, Shaojuan Ma, Cheng Huang

и другие.

Electronic Research Archive, Год журнала: 2025, Номер 33(1), С. 294 - 326

Опубликована: Янв. 1, 2025

<p>Accurate interval prediction of wind speed plays a vital role in ensuring the efficiency and stability power generation. Due to insufficient traditional methods for mining nonlinear features, this paper, novel method was proposed by combining improved wavelet threshold deep learning (BiTCN-BiGRU) with nutcracker optimization algorithm (NOA). First, NOA used optimize transform (WT) BiTCN-BiGRU. Second, we applied NOA-WT smooth data. Then, capture features time series, phase space reconstruction (PSR) utilized identify chaotic characteristics processed Finally, NOA-BiTCN-BiGRU model built perform prediction. Under same hyperparameters network structure settings, comparison other showed that coverage probability (PICP) mean width (PIMW) NOA-WT-BiTCN-BiGRU achieves best balance, good accuracy generalization performance. This research can provide reference guidance time-series real world.</p>

Язык: Английский

Процитировано

0

The CEEMDAN-EWT-CNN-GRU-SVM Model: A Robust Framework for Decomposing Non-Stationary Time Series, Extracting Data features, and Predicting Solar Radiation DOI Creative Commons
Sharareh Pourebrahim, Akram Seifi,

Mohammad Ehteram

и другие.

Results in Engineering, Год журнала: 2025, Номер unknown, С. 104267 - 104267

Опубликована: Фев. 1, 2025

Язык: Английский

Процитировано

0

Development of a Hybrid Deep Learning Model with Hho Algorithm for Dynamic Response Prediction of Wind-Wave Integrated Floating Energy Systems DOI

Jiaqing Yin,

Y. Fan,

Musa Bashir

и другие.

Опубликована: Янв. 1, 2025

Язык: Английский

Процитировано

0

A Wind Speed Prediction Method Based on Signal Decomposition Technology Deep Learning Model DOI Creative Commons

Jie Du,

S. C. Chen,

Linlin Pan

и другие.

Energies, Год журнала: 2025, Номер 18(5), С. 1136 - 1136

Опубликована: Фев. 25, 2025

Accurate and reliable wind speed prediction plays a significant role in ensuring the reasonable scheduling of power resources. However, sequences often exhibit complex characteristics such as instability volatility, which create substantial challenges for prediction. In order to cope with these challenges, multi-step method based on secondary decomposition (SD) techniques deep learning models is proposed this paper. First, original signal was decomposed into multiple by using two techniques, multi-scale wavelet spectrum analysis (MWPSA) variational mode (VMD). Second, model constructed combining convolutional neural networks (CNNs), bidirectional long short-term memory (BiLSTM) networks, attention mechanism perform predicting each sequence, parameters were optimized particle swarm optimization (PSO) algorithm. Ultimately, results from all combined generate final The predictive performance evaluated real data collected farm China. Experimental show that significantly outperforms other comparison prediction, highlights its accuracy reliability.

Язык: Английский

Процитировано

0

CMLLM: A novel cross-modal large language model for wind power forecasting DOI
Guopeng Zhu,

Weiqing Jia,

Zhitai Xing

и другие.

Energy Conversion and Management, Год журнала: 2025, Номер 330, С. 119673 - 119673

Опубликована: Фев. 27, 2025

Язык: Английский

Процитировано

0

A Novel Hybrid Deep Learning Model for Day-Ahead Wind Power Interval Forecasting DOI Open Access

Jianjing Mao,

Jian Zhao, H. Zhang

и другие.

Sustainability, Год журнала: 2025, Номер 17(7), С. 3239 - 3239

Опубликована: Апрель 5, 2025

Accurate interval forecasting of wind power is crucial for ensuring the safe, stable, and cost-effective operation grids. In this paper, we propose a hybrid deep learning model day-ahead forecasting. The begins by utilizing Gaussian mixture (GMM) to cluster daily data with similar distribution patterns. To optimize input features, feature selection (FS) method applied remove irrelevant data. empirical wavelet transform (EWT) then employed decompose both numerical weather prediction (NWP) into frequency components, effectively isolating high-frequency components that capture inherent randomness volatility A convolutional neural network (CNN) used extract spatial correlations meteorological while bidirectional gated recurrent unit (BiGRU) captures temporal dependencies within sequence. further enhance accuracy, multi-head self-attention mechanism (MHSAM) incorporated assign greater weight most influential elements. This leads development based on GMM-FS-EWT-CNN-BiGRU-MHSAM. proposed validated through comparison benchmark demonstrates superior performance. Furthermore, forecasts generated using NPKDE shows new achieves higher accuracy.

Язык: Английский

Процитировано

0

A TSFLinear model for wind power prediction with feature decomposition-clustering DOI
Huawei Mei, Qingyuan Zhu,

Cao Wangbin

и другие.

Renewable Energy, Год журнала: 2025, Номер unknown, С. 123142 - 123142

Опубликована: Апрель 1, 2025

Язык: Английский

Процитировано

0