
Healthcare Analytics, Год журнала: 2025, Номер unknown, С. 100395 - 100395
Опубликована: Апрель 1, 2025
Язык: Английский
Healthcare Analytics, Год журнала: 2025, Номер unknown, С. 100395 - 100395
Опубликована: Апрель 1, 2025
Язык: Английский
Energy, Год журнала: 2024, Номер 299, С. 131383 - 131383
Опубликована: Апрель 25, 2024
Язык: Английский
Процитировано
7Engineering Applications of Artificial Intelligence, Год журнала: 2024, Номер 135, С. 108842 - 108842
Опубликована: Июль 4, 2024
Язык: Английский
Процитировано
4Case Studies in Thermal Engineering, Год журнала: 2024, Номер 61, С. 105048 - 105048
Опубликована: Авг. 30, 2024
Язык: Английский
Процитировано
4Ocean Engineering, Год журнала: 2024, Номер 312, С. 119227 - 119227
Опубликована: Сен. 12, 2024
Язык: Английский
Процитировано
4International Journal of Hydrogen Energy, Год журнала: 2025, Номер unknown
Опубликована: Янв. 1, 2025
Язык: Английский
Процитировано
0Artificial Intelligence Review, Год журнала: 2025, Номер 58(3)
Опубликована: Янв. 6, 2025
Abstract Seed quality is of great importance for agricultural cultivation. High-throughput phenotyping techniques can collect magnificent seed information in a rapid and non-destructive manner. Emerging deep learning technology brings new opportunities effectively processing massive diverse data from seeds evaluating their quality. This article comprehensively reviews the principle several high-throughput non-destructively collection information. In addition, recent research studies on application learning-based approaches inspection are reviewed summarized, including variety classification grading, damage detection, components prediction, cleanliness, vitality assessment, etc. review illustrates that combination be promising tool various phenotype seeds, which used effective evaluation industrial practical applications, such as breeding, management, selection food source.
Язык: Английский
Процитировано
0Journal of Engineering Research, Год журнала: 2025, Номер unknown
Опубликована: Янв. 1, 2025
Язык: Английский
Процитировано
0ACS Applied Nano Materials, Год журнала: 2025, Номер unknown
Опубликована: Фев. 2, 2025
Язык: Английский
Процитировано
0Building and Environment, Год журнала: 2025, Номер unknown, С. 112689 - 112689
Опубликована: Фев. 1, 2025
Язык: Английский
Процитировано
0Applied Sciences, Год журнала: 2025, Номер 15(4), С. 1727 - 1727
Опубликована: Фев. 8, 2025
Additive manufacturing is gaining importance in a number of application areas, and there an increased demand for mechanically resilient components. A way to improve the mechanical properties parts made thermoplastics by using reinforcing material. The study demonstrates development monitoring procedure fused filament fabrication-based co-extrusion process wire-reinforced thermoplastic Test components two variants are produced, data acquisition carried out with laser line scanner. collected employed train deep neural networks classify printed layers, aiming be able four different classes identify layers insufficient quality. dedicated convolutional network designed taking into account various factors such as layer architecture, pre-processing optimization methods. Several architectures, including transfer learning (based on VGG16 ResNet50), without fine-tuning, compared terms their performance based F1 score. Both model ResNet50 fine-tuning achieve score 84% 83%, respectively, decisive class ‘wire bad’ classifying inadequate reinforcement.
Язык: Английский
Процитировано
0