Electric Power Systems Research, Год журнала: 2024, Номер 241, С. 111316 - 111316
Опубликована: Дек. 19, 2024
Язык: Английский
Electric Power Systems Research, Год журнала: 2024, Номер 241, С. 111316 - 111316
Опубликована: Дек. 19, 2024
Язык: Английский
Energy Nexus, Год журнала: 2025, Номер unknown, С. 100436 - 100436
Опубликована: Апрель 1, 2025
Язык: Английский
Процитировано
0Results in Engineering, Год журнала: 2024, Номер unknown, С. 102967 - 102967
Опубликована: Сен. 1, 2024
Язык: Английский
Процитировано
3Mathematical and Computational Applications, Год журнала: 2024, Номер 29(5), С. 88 - 88
Опубликована: Окт. 2, 2024
This paper proposes a high-performing, hybrid method for Maximum Power Point Tracking (MPPT) in photovoltaic (PV) systems. The approach is based on an intelligent Nonlinear Discrete Proportional–Integral–Derivative (N-DPID) controller with the Perturb and Observe (P&O) method. feedback gains derived are optimized by metaheuristic algorithm called Particle Swarm Optimization (PSO). proposed methods appear to present adequate solutions overcome drawbacks of existing despite various weather conditions considered analysis, providing robust solution dynamic environmental conditions. results showed better performance accuracy compared those encountered literature. We also recall that this technique provides systematic design procedure search MPPT systems has not yet been documented literature best our knowledge.
Язык: Английский
Процитировано
3Energies, Год журнала: 2024, Номер 17(17), С. 4379 - 4379
Опубликована: Сен. 1, 2024
The accurate prediction of carbon dioxide (CO2) emissions in the building industry can provide data support and theoretical insights for sustainable development. This study proposes a hybrid model predicting CO2 that combines multi-strategy improved particle swarm optimization (MSPSO) algorithm with long short-term memory (LSTM) model. Firstly, (PSO) is enhanced by combining tent chaotic mapping, mutation least-fit particles, random perturbation strategy. Subsequently, performance MSPSO evaluated using set 23 internationally recognized test functions. Finally, predictive MSPSO-LSTM assessed from Yangtze River Delta region as case study. results indicate coefficient determination (R2) reaches 0.9677, which more than 10% higher BP, LSTM, CNN non-hybrid models demonstrates significant advantages over PSO-LSTM, GWO-LSTM, WOA-LSTM models. Additionally, mean square error (MSE) 2445.6866 Mt, absolute (MAE) 4.1010 both significantly lower those Overall, high accuracy industry, offering robust development industry.
Язык: Английский
Процитировано
2Electric Power Systems Research, Год журнала: 2024, Номер 241, С. 111316 - 111316
Опубликована: Дек. 19, 2024
Язык: Английский
Процитировано
2