Resources Policy, Год журнала: 2022, Номер 80, С. 103166 - 103166
Опубликована: Дек. 10, 2022
Язык: Английский
Resources Policy, Год журнала: 2022, Номер 80, С. 103166 - 103166
Опубликована: Дек. 10, 2022
Язык: Английский
Resources Policy, Год журнала: 2022, Номер 78, С. 102890 - 102890
Опубликована: Июль 12, 2022
Язык: Английский
Процитировано
134Journal of Environmental Management, Год журнала: 2023, Номер 344, С. 118560 - 118560
Опубликована: Июль 7, 2023
Язык: Английский
Процитировано
117Resources Policy, Год журнала: 2023, Номер 82, С. 103449 - 103449
Опубликована: Март 14, 2023
Язык: Английский
Процитировано
84Environmental Science and Pollution Research, Год журнала: 2023, Номер 30(13), С. 38921 - 38938
Опубликована: Янв. 1, 2023
Язык: Английский
Процитировано
64Journal of Environmental Management, Год журнала: 2023, Номер 340, С. 117912 - 117912
Опубликована: Апрель 22, 2023
Язык: Английский
Процитировано
60Ecological Indicators, Год журнала: 2023, Номер 148, С. 110105 - 110105
Опубликована: Март 8, 2023
Elucidating the response mechanism of variation in vegetation trend to determinant is great value environmental resource management, particularly significant ecologically fragile area. The Liaohe River Basin (LRB) a key part eco-security China, which has experienced apparent climatic variations and intensified human activities recent decades. Yet, it still remains not clear about drivers shaping spatio-temporal patterns growth. Here, normalized difference index (NDVI) was utilized investigate coverage from 2000 2019. Then, we incorporated partial derivatives analysis conduct attribution analyses greening light meteorological data. prime findings are as follows: (1) LRB presented growing state 20 years at rate 0.0031/a, with spatial temporal heterogeneity due its slope; (2) results showed that average contribution precipitation, temperature, solar radiation NDVI changes 0.00205/a, 0.00008/a, −0.00028/a, respectively. (3) change played most dominant role influencing result relative contributions 59.68% (40.32% contributed by anthropogenic activities); (4) LULC dynamics were characterized an increase forest land large-scale ecological afforestation projects, coverage. Conversely, urbanization adversely affected variations. Understanding this study expected offer further scientific support practical implications for monitoring local status.
Язык: Английский
Процитировано
55Ecological Informatics, Год журнала: 2024, Номер 80, С. 102498 - 102498
Опубликована: Янв. 26, 2024
Land Use and Cover (LULC) maps are vital prerequisites for weather prediction models. This study proposes a framework to generate LULC based on the U.S. Geological Survey (USGS) 24-category scheme using Google Earth Engine. To realize precise map, fusion of pixel-based object-based classification strategies was implemented various machine learning techniques across different seasons. For this purpose, feature importance analysis conducted top classifiers considering dynamic (seasonal) behavior LULC. The results showed that ensemble approaches such as Random Forest Gradient Tree Boosting outperformed other algorithms. also demonstrated approach had better performance due consideration contextual features. Finally, proposed produced map with higher accuracy (overall = 94.92% kappa coefficient 94.19%). Furthermore, generated assessed by applying it Weather Research Forecasting (WRF) model downscaling wind speed 2-m air temperature (T2). assessment indicated effectively reflected real-world conditions, thereby impacting estimation T2 fields WRF. Statistical assessments enhancements in RMSE 0.02 °C, MAE 1 Bias 0.03 °C T2. Additionally, there an improvement 0.06 m/s speed. Consequently, can be produce accurate up-to-date high-resolution geographical areas worldwide. source codes corresponding research paper available GitHub via https://github.com/Mganjirad/GEE-LULC-WRF.
Язык: Английский
Процитировано
23Resources Policy, Год журнала: 2022, Номер 80, С. 103214 - 103214
Опубликована: Дек. 9, 2022
Язык: Английский
Процитировано
50Resources Policy, Год журнала: 2023, Номер 85, С. 103825 - 103825
Опубликована: Июнь 17, 2023
Язык: Английский
Процитировано
38Environment Development and Sustainability, Год журнала: 2023, Номер 26(6), С. 14405 - 14431
Опубликована: Апрель 17, 2023
Язык: Английский
Процитировано
35