Harvesting the volatility smile in a large emerging market: A Dynamic Nelson–Siegel approach DOI
Sudarshan Kumar, Sobhesh Kumar Agarwalla, Jayanth R. Varma

и другие.

Journal of Futures Markets, Год журнала: 2023, Номер 43(11), С. 1615 - 1644

Опубликована: Июль 14, 2023

Abstract While there is a large literature on modeling volatility smile in options markets, most such studies are eventually focused the forecasting performance of model parameters and not applicability models trading environment. Drawing analogy like term structure context interest rates fixed‐income we evaluate Dynamic Nelson–Siegel (DNS) approach to dynamics environment against competing alternatives. Using model‐based mispricing as our sorting criterion, deploying strategy going long upper deciles short lower deciles, show that dynamic consistently outperform their static counterparts, with worst outperforming best terms percentage mean returns from portfolios Sharpe ratio. Specifically, find DNS outperforms all other specifications selected criteria.

Язык: Английский

An ARIMA-LSTM model for predicting volatile agricultural price series with random forest technique DOI
Soumik Ray, Achal Lama, Pradeep Mishra

и другие.

Applied Soft Computing, Год журнала: 2023, Номер 149, С. 110939 - 110939

Опубликована: Окт. 20, 2023

Язык: Английский

Процитировано

63

Machine learning gold price forecasting DOI
Bingzi Jin,

Xiaojie Xu

International Journal of Management Science and Engineering Management, Год журнала: 2025, Номер unknown, С. 1 - 13

Опубликована: Янв. 21, 2025

Язык: Английский

Процитировано

3

Nexuses between rent of natural resources, economic complexity, and technological innovation: The roles of GDP, human capital and civil liberties DOI
Rafael Alvarado, Muntasir Murshed, Javier Cifuentes‐Faura

и другие.

Resources Policy, Год журнала: 2023, Номер 85, С. 103637 - 103637

Опубликована: Июнь 17, 2023

Язык: Английский

Процитировано

34

Decision intelligence-driven predictive modelling of air quality index in surface mining DOI
Muhammad Kamran, Izhar Mithal Jiskani, Zhiming Wang

и другие.

Engineering Applications of Artificial Intelligence, Год журнала: 2024, Номер 133, С. 108399 - 108399

Опубликована: Апрель 15, 2024

Язык: Английский

Процитировано

15

Unraveling the crystal ball: Machine learning models for crude oil and natural gas volatility forecasting DOI
Aviral Kumar Tiwari, Gagan Deep Sharma,

Amar Rao

и другие.

Energy Economics, Год журнала: 2024, Номер 134, С. 107608 - 107608

Опубликована: Май 10, 2024

Язык: Английский

Процитировано

11

Novel deterministic and probabilistic forecasting methods for crude oil price employing optimized deep learning, statistical and hybrid models DOI
Sourav Kumar Purohit, Sibarama Panigrahi

Information Sciences, Год журнала: 2023, Номер 658, С. 120021 - 120021

Опубликована: Дек. 16, 2023

Язык: Английский

Процитировано

18

From forests to faucets to fuel: Investigating the domino effect of extreme risk in timber, water, and energy markets DOI
Muhammad Abubakr Naeem, Najaf Iqbal, Sitara Karim

и другие.

Finance research letters, Год журнала: 2023, Номер 55, С. 104010 - 104010

Опубликована: Май 17, 2023

Язык: Английский

Процитировано

17

A hybrid econometrics and machine learning based modeling of realized volatility of natural gas DOI Creative Commons
Werner Kristjanpoller

Financial Innovation, Год журнала: 2024, Номер 10(1)

Опубликована: Янв. 29, 2024

Abstract Determining which variables affect price realized volatility has always been challenging. This paper proposes to explain how financial assets influence by developing an optimal day-to-day forecast. The methodological proposal is based on using the best econometric and machine learning models forecast volatility. In particular, forecasting from heterogeneous autoregressive long short-term memory are used determine of Standard Poor’s 500 index, euro–US dollar exchange rate, gold, Brent crude oil natural gas. These influenced gas in 87.4% days analyzed; rate was primary asset explained 40.1% influence. results proposed daily analysis differed those methodology study entire period. traditional model, studies period, cannot temporal effects, whereas can. allows us distinguish effects for each day, week, or month rather than averages periods, with flexibility analyze different frequencies periods. capability key analyzing influences making decisions about

Язык: Английский

Процитировано

5

High inflation during Russia–Ukraine war and financial market interaction: Evidence from C-Vine Copula and SETAR models DOI
Taher Hamza, Hayet Ben Haj Hamida, Mehdi Mili

и другие.

Research in International Business and Finance, Год журнала: 2024, Номер 70, С. 102384 - 102384

Опубликована: Май 6, 2024

Язык: Английский

Процитировано

5

Minerals at the crossroads: Economic policies, global trade, and renewable energy in the global South DOI

Amar Rao,

Mrinalini Srivastava, Jaya Singh Parihar

и другие.

Resources Policy, Год журнала: 2024, Номер 97, С. 105257 - 105257

Опубликована: Авг. 14, 2024

Язык: Английский

Процитировано

4