Research on Economic Evaluation Methods and Project Investment Strategies for Gas Power Generation Based on the Natural Gas Industry Chain and Gas–Electricity Price Linkage in China DOI Creative Commons
Wei Hua, Li Feng, Zong-Shang Hong

и другие.

Fuels, Год журнала: 2024, Номер 5(4), С. 715 - 726

Опубликована: Окт. 24, 2024

In recent years, due to the spike in natural gas spot prices, gas-fired power corporations’ operating costs have skyrocketed. Traditional generation corporations gradually been withdrawing from investment, replaced by oil and enterprises with upstream resources. The development of plants helps maintain stability grid has a positive effect on realization carbon neutrality goals. At present, most financial evaluation methods for projects tend focus static tariffs project itself lack consideration overall contribution industry chain latest “gas–electricity price linkage” mechanisms China, leading reducing investment yield constraints. this paper, methodology based industrial mechanism was proposed. return characteristics specific under different provinces were revealed through methodology. Considering trends major operation strategies These studies provide references suggestions future decisions new projects.

Язык: Английский

AI-Driven Short-Term Load Forecasting Enhanced by Clustering in Multi-Type University Buildings: Insights Across Building Types and Pandemic Phases DOI

Yong-Lin Hu,

Kai-Yun Lo,

I-Yun Lisa Hsieh

и другие.

Journal of Building Engineering, Год журнала: 2025, Номер unknown, С. 112417 - 112417

Опубликована: Март 1, 2025

Язык: Английский

Процитировано

3

Molecular dynamics simulation and experimental research on the influence of SiO2-H2O nanofluids on wettability of low-rank coal DOI
Jiajia Zhao, Shixiang Tian, Peng Li

и другие.

Colloids and Surfaces A Physicochemical and Engineering Aspects, Год журнала: 2023, Номер 679, С. 132580 - 132580

Опубликована: Окт. 13, 2023

Язык: Английский

Процитировано

35

Natural gas spot price prediction research under the background of Russia-Ukraine conflict - based on FS-GA-SVR hybrid model DOI

Yunan Zheng,

Jian Luo,

Jinbiao Chen

и другие.

Journal of Environmental Management, Год журнала: 2023, Номер 344, С. 118446 - 118446

Опубликована: Июнь 21, 2023

Язык: Английский

Процитировано

22

Incorporating Russo-Ukrainian war in Brent crude oil price forecasting: A comparative analysis of ARIMA, TARMA and ENNReg models DOI Creative Commons
Sagiru Mati, Magdalena Rădulescu, Najia Saqib

и другие.

Heliyon, Год журнала: 2023, Номер 9(11), С. e21439 - e21439

Опубликована: Ноя. 1, 2023

This article investigates the performance of three models - Autoregressive Integrated Moving Average (ARIMA), Threshold (TARMA) and Evidential Neural Network for Regression (ENNReg) in forecasting Brent crude oil price, a crucial economic variable with significant impact on global economy. With increasing complexity price dynamics due to geopolitical factors such as Russo-Ukrainian war, we examine incorporating information war accuracy these models. Our analysis shows that can significantly improve models, ENNReg model inclusion dummy outperforms other during period. Including has enhanced by 0.11%. These results carry implications regarding policymakers, investors, researchers interested developing accurate presence events war. The be used governments oil-exporting countries budget policies.

Язык: Английский

Процитировано

20

The reaction of the metal and gold resource planning in the post-COVID-19 era and Russia-Ukrainian conflict: Role of fossil fuel markets for portfolio hedging strategies DOI
Kamel Si Mohammed, Rabeh Khalfaoui, Buhari Doğan

и другие.

Resources Policy, Год журнала: 2023, Номер 83, С. 103654 - 103654

Опубликована: Май 8, 2023

Язык: Английский

Процитировано

17

Scenario analysis to evaluate the economic benefits of tight oil resource development in China DOI Creative Commons
Bo Yan, Hongyuan Liu, Xinyan Peng

и другие.

Energy Strategy Reviews, Год журнала: 2024, Номер 51, С. 101318 - 101318

Опубликована: Янв. 1, 2024

Evaluating the economic benefits of tight oil resources is necessary for China to increase its production and reserves. This study systematically analyzes uncertainties in development China, factors affecting economy, coevolution from technology market perspectives. The results indicate that a positive environment technological progress are important realizing oil. Four potential scenarios also identified (i.e., current scenario, limited efficient inefficient scenario), each associated with different internal rates return (8 %, 14 20 6 respectively).

Язык: Английский

Процитировано

4

Fossil energy market price prediction by using machine learning with optimal hyper-parameters: A comparative study DOI
Salim Lahmiri

Resources Policy, Год журнала: 2024, Номер 92, С. 105008 - 105008

Опубликована: Апрель 21, 2024

Язык: Английский

Процитировано

4

Forecasting the Stock Price of Coal and Coal Commodity Companies using the ARIMA and ARCH/GARCH Models for 2011-2022 DOI Creative Commons

Didi Nuryadin,

Ida Bagus Putu Cesario Putra Sarayuda,

Dewi Qutrun Nada

и другие.

Jurnal Samudra Ekonomi dan Bisnis, Год журнала: 2025, Номер 16(01), С. 29 - 45

Опубликована: Янв. 29, 2025

This study focuses on coal companies in Indonesia, a key sector the mining industry. It explores how ARIMA and ARCH/GARCH models can predict share prices of these companies. The results indicate that are effective, with Mean Absolute Percentage Error (MAPE) values ranging from 6 to 20 percent. movement stock is directly proportional changes benchmark price. Additionally, it emphasizes significant impact geopolitical events, like Russia-Ukraine conflict, post-pandemic economic conditions These factors have influenced company prices, highlighting value forecasting adapting market fluctuations. research provides important insights for investors, suggesting advanced econometric help make informed investment decisions enhance strategies volatile by accounting external events model accuracy.

Язык: Английский

Процитировано

0

Gaussian random fuzzy and nature-inspired neural networks: a novel approach to Brent oil price prediction DOI Creative Commons
Sagiru Mati, Goran Yousif Ismael, A. G. Usman

и другие.

Neural Computing and Applications, Год журнала: 2025, Номер unknown

Опубликована: Май 29, 2025

Abstract Given the volatile nature of oil prices in wake COVID-19 and Russia-Ukraine war, need for advanced prediction models is evident. The Autoregressive Integrated Moving Average model estimated through maximum likelihood method with Marquardt-BFGS optimisation (ARIMA-BFGS) was used to select relevant predictors three different models: Extreme Learning Machine (ELM), newly introduced Evidential Neural Network Regression Gaussian Random Fuzzy numbers (EVNN-FUZZY) an Artificial fine-tuned Particle Swarm Optimisation (ANN-PSO). Formal unit root tests, Augmented Dickey Fuller (ADF) Phillips-Perron (PP) are test stationarity Brent price before estimating ARIMA-BFGS. Evaluation measures such as root-mean-squared error (RMSE), mean absolute (MAE), percentage (MAPE) coefficient determination ( $$R^2$$ R 2 ) assess performance models. study utilises a combination traditional methods neural networks improve accuracy prediction. ANN-PSO improves predictive precision ARIMA-BFGS by 65.30% training dataset 88.72% testing sample. incorporation war has improved EVNN-FUZZY. Governments, investors producers can all benefit from these outcomes while making financial decisions. findings this be oil-exporting economies guide their budgets, oil-importing countries use them manage inflation.

Язык: Английский

Процитировано

0

Managing the risks against carbon neutralization for green maritime transport DOI
Melisa Özbiltekin-Pala, Yiğit Kazançoğlu, Stavros Karamperidis

и другие.

Journal of Cleaner Production, Год журнала: 2024, Номер 457, С. 142478 - 142478

Опубликована: Май 3, 2024

Язык: Английский

Процитировано

2