Resources Policy, Год журнала: 2023, Номер 89, С. 104588 - 104588
Опубликована: Дек. 30, 2023
Язык: Английский
Resources Policy, Год журнала: 2023, Номер 89, С. 104588 - 104588
Опубликована: Дек. 30, 2023
Язык: Английский
Environmental Science and Pollution Research, Год журнала: 2023, Номер 30(31), С. 77605 - 77621
Опубликована: Июнь 1, 2023
Язык: Английский
Процитировано
238Resources Policy, Год журнала: 2023, Номер 85, С. 103886 - 103886
Опубликована: Июль 28, 2023
Язык: Английский
Процитировано
185The Extractive Industries and Society, Год журнала: 2023, Номер 15, С. 101284 - 101284
Опубликована: Июнь 6, 2023
Язык: Английский
Процитировано
169Deleted Journal, Год журнала: 2024, Номер 1, С. 100001 - 100001
Опубликована: Фев. 29, 2024
Building price projections of various energy commodities has long been an important endeavor for a wide range participants in the market. We study forecast problem this paper by concentrating on four significant commodities. Using nonlinear autoregressive neural network models, we investigate daily prices WTI and Brent crude oil as well monthly Henry Hub natural gas New York Harbor No. 2 heating oil. prediction performance resulting from model configurations, including training techniques, hidden neurons, delays, data segmentation. Based investigation, relatively straightforward models are built that yield quite accurate reliable performance. Specifically, terms relative root mean square errors is 1.96%/1.81%/9.75%/21.76%, 1.96%/1.80%/8.76%/14.41%, 1.87%/1.78%/9.10%/16.97% training, validation, testing, respectively, overall error 1.95%/1.80%/9.51%/20.35% whole sample oil/Brent oil/New oil/Henry gas. The outcomes projection might be used technical analysis or integrated with other fundamental forecasts policy analysis.
Язык: Английский
Процитировано
135Resources Policy, Год журнала: 2023, Номер 85, С. 103865 - 103865
Опубликована: Июль 8, 2023
Язык: Английский
Процитировано
39Technological Forecasting and Social Change, Год журнала: 2023, Номер 197, С. 122872 - 122872
Опубликована: Сен. 28, 2023
Язык: Английский
Процитировано
27Resources Policy, Год журнала: 2023, Номер 86, С. 104216 - 104216
Опубликована: Окт. 1, 2023
Язык: Английский
Процитировано
25Applied Energy, Год журнала: 2024, Номер 361, С. 122884 - 122884
Опубликована: Март 5, 2024
This article offers a detailed investigation into the technical, economic along with environmental performance of four configurations hybrid renewable energy systems (HRESs), aiming at supplying electricity to remote location, Henry Island in India. The study explores combinations involving photovoltaic (PV) panels, wind turbines, biogas generators, batteries, and converters, while evaluating their economic, performance. analysis yield that among all examined, PV, turbine, generator, battery, converter integrated configuration stands out highly favourable results, showcasing minimal value levelized cost (LCOE) $0.4224 per kWh lowest net present (NPC) $6.41 million. However, technical comprising PV battery yields maximum excess output 2,838,968 kWh/yr. Additionally, machine learning techniques are employed analyse data. shows Bilayered Neural Network model achieves exceptional accuracy predicting LCOE, Medium proves be most accurate These findings provide valuable perception design optimisation HRES for off-grid applications regions, taking account aspects.
Язык: Английский
Процитировано
12Journal of Environmental Management, Год журнала: 2025, Номер 380, С. 124514 - 124514
Опубликована: Март 13, 2025
Язык: Английский
Процитировано
1Environmental Science and Pollution Research, Год журнала: 2023, Номер 30(43), С. 97948 - 97964
Опубликована: Авг. 21, 2023
Язык: Английский
Процитировано
18