Reliability Engineering & System Safety, Год журнала: 2022, Номер 229, С. 108892 - 108892
Опубликована: Окт. 7, 2022
Язык: Английский
Reliability Engineering & System Safety, Год журнала: 2022, Номер 229, С. 108892 - 108892
Опубликована: Окт. 7, 2022
Язык: Английский
Reliability Engineering & System Safety, Год журнала: 2024, Номер 244, С. 109943 - 109943
Опубликована: Янв. 11, 2024
Язык: Английский
Процитировано
25Journal of Environmental Management, Год журнала: 2021, Номер 294, С. 113023 - 113023
Опубликована: Июнь 10, 2021
Язык: Английский
Процитировано
98Geomatics Natural Hazards and Risk, Год журнала: 2021, Номер 12(1), С. 2087 - 2116
Опубликована: Янв. 1, 2021
Severe flood events in the trans-boundary Shatt Al-Arab basin (Iraq-Iran) claim hundreds of human lives and cause damage to economy environment. Therefore, developing a hazard model recognize basin's susceptible areas flooding is important for decision makers comprehensive risk management. The map was prepared using geographical information systems (GIS) multi-criteria analysis (MCDA) along with application analytical hierarchy process (AHP) method identify optimal selection weights factors that contribute risk. causative used this study were rainfall, distance river, digital elevation (DEM), slope, land use/land cover (LULC), drainage density, soils, lithology. derived consisted four distinct categories (zones). These zones depict high, intermediate, low, very low around 20%, 40%, 39%, 2% area, respectively. produced further verified historical event area. results found be consistent data events, revealing model's effectiveness realistic representation mapping.
Язык: Английский
Процитировано
86Geoscience Frontiers, Год журнала: 2021, Номер 12(5), С. 101177 - 101177
Опубликована: Фев. 23, 2021
This paper introduces an intelligent framework for predicting the advancing speed during earth pressure balance (EPB) shield tunnelling. Five artificial intelligence (AI) models based on machine and deep learning techniques—back-propagation neural network (BPNN), extreme (ELM), support vector (SVM), long-short term memory (LSTM), gated recurrent unit (GRU)—are used. geological nine operational parameters that influence are considered. A field case of tunnelling in Shenzhen City, China is analyzed using developed models. total 1000 datasets adopted to establish The prediction performance five ranked as GRU > LSTM SVM ELM BPNN. Moreover, Pearson correlation coefficient (PCC) sensitivity analysis. results reveal main thrust (MT), penetration (P), foam volume (FV), grouting (GV) have strong correlations with (AS). An empirical formula constructed high-correlation influential factors their corresponding datasets. Finally, performances method compared. all perform better than method.
Язык: Английский
Процитировано
82Acta Geotechnica, Год журнала: 2021, Номер 17(4), С. 1167 - 1182
Опубликована: Июль 30, 2021
Язык: Английский
Процитировано
71Tunnelling and Underground Space Technology, Год журнала: 2021, Номер 119, С. 104245 - 104245
Опубликована: Окт. 28, 2021
Язык: Английский
Процитировано
65Reliability Engineering & System Safety, Год журнала: 2022, Номер 231, С. 108984 - 108984
Опубликована: Ноя. 16, 2022
Язык: Английский
Процитировано
46Reliability Engineering & System Safety, Год журнала: 2023, Номер 238, С. 109413 - 109413
Опубликована: Июнь 3, 2023
Язык: Английский
Процитировано
41Environmental Science and Pollution Research, Год журнала: 2023, Номер 30(14), С. 42267 - 42281
Опубликована: Янв. 16, 2023
Язык: Английский
Процитировано
26Natural Hazards, Год журнала: 2022, Номер 113(1), С. 125 - 141
Опубликована: Март 10, 2022
Язык: Английский
Процитировано
33