Enhancing Pipeline Reliability: A Structural Integrity Management Approach Using Minimal Cut Set Method and Importance Measures DOI Creative Commons

Marco Antônio Sabará,

José Antônio da Cunha Ponciano Gomes, Alysson Helton Santos Bueno

и другие.

IntechOpen eBooks, Год журнала: 2025, Номер unknown

Опубликована: Янв. 10, 2025

Gas pipelines are fundamental structures for transporting energy resources. Their integrity is constantly threatened by failures caused potential punctures or ruptures, leading to gas releases, which can have significant consequences the installation, people, and environment. Various methodologies been proposed improve Pipeline Structural Integrity Management (PSIM) processes. In this work, a model estimating probability of release failure using Quantitative Fault Tree Analysis (QFTA) approach. The Minimum Cut Set (MCS) technique applied along with assessment Importance Measures (IM) provide an accurate estimation rate (λ) identification most critical basic events. This information be used support actions in Risk-Based Inspection (RBI) Reliability-Centered Maintenance (RCM) eliminate, control, mitigate risks. was validated comparing results obtained through Monte Carlo Simulation data from official databases pipeline incidents/accidents similar models published literature. proved capable accurately (λ), closely matching database values more convergent than those achieved reference study also provides guidelines correct effective application PSIM routines.

Язык: Английский

Hydrogen impact on transmission pipeline risk: probabilistic analysis of failure causes DOI Creative Commons
Ruochen Yang, Colin A. Schell,

Dhruva Rayasam

и другие.

Reliability Engineering & System Safety, Год журнала: 2025, Номер unknown, С. 110825 - 110825

Опубликована: Янв. 1, 2025

Язык: Английский

Процитировано

2

Measuring node importance in air transportation systems: On the quality of complex network estimations DOI
Sebastian Wandelt, Yifan Xu, Xiaoqian Sun

и другие.

Reliability Engineering & System Safety, Год журнала: 2023, Номер 240, С. 109596 - 109596

Опубликована: Авг. 25, 2023

Язык: Английский

Процитировано

34

Corrosion leakage risk diagnosis of oil and gas pipelines based on semi-supervised domain generalization model DOI
Xingyuan Miao, Hong Zhao,

Boxuan Gao

и другие.

Reliability Engineering & System Safety, Год журнала: 2023, Номер 238, С. 109486 - 109486

Опубликована: Июнь 30, 2023

Язык: Английский

Процитировано

24

Consequence assessment of gas pipeline failure caused by external pitting corrosion using an integrated Bayesian belief network and GIS model: Application with Alberta pipeline DOI
Haile Woldesellasse, Solomon Tesfamariam

Reliability Engineering & System Safety, Год журнала: 2023, Номер 240, С. 109573 - 109573

Опубликована: Авг. 17, 2023

Язык: Английский

Процитировано

24

Tensile capacity degradation of randomly corroded strands based on a refined numerical model DOI
Zhongwei Zhao, Wuyang Wang,

Renzhang Yan

и другие.

Reliability Engineering & System Safety, Год журнала: 2024, Номер unknown, С. 110512 - 110512

Опубликована: Сен. 1, 2024

Язык: Английский

Процитировано

13

A Bayesian network‐based susceptibility assessment model for oil and gas pipelines suffering under‐deposit corrosion DOI

Uyen Dao,

Sidum Adumene, Zaman Sajid

и другие.

The Canadian Journal of Chemical Engineering, Год журнала: 2024, Номер unknown

Опубликована: Март 11, 2024

Abstract Oil and gas pipelines are exposed to harsh operating conditions that facilitate their susceptibility complex corrosion mechanisms. This affects integrity results in failure with associated consequences. Capturing these phenomena requires a robust approach. study proposes the application of dynamic probabilistic model capture key influential factors contribute under‐deposit (UDC) mechanism oil pipelines. The Bayesian network assesses pipeline's (degradation rate) UDC, capturing parametric dependencies. predicted rates input data for propagation prediction. Three semi‐empirical models used comparative assessment establish degree given prevalent parameters. proposed approach is tested on an offshore pipeline, impact parameters predicted. result shows percentage increase degradation rate by 18.7%, 33.2%, 35.8%, 63.4%, respectively, various interaction scenarios. present offers adaptive technique would provide early warning guide pipeline aid management assets suffering from deposit corrosion.

Язык: Английский

Процитировано

12

Reliability-based maintenance optimization of long-distance oil and gas transmission pipeline networks DOI
Bilal Zerouali,

Yacine Sahraoui,

Mourad Nahal

и другие.

Reliability Engineering & System Safety, Год журнала: 2024, Номер 249, С. 110236 - 110236

Опубликована: Май 22, 2024

Язык: Английский

Процитировано

12

Residual strength prediction of corroded pipelines based on physics-informed machine learning and domain generalization DOI Creative Commons
Tingting Wu, Xingyuan Miao,

Fulin Song

и другие.

npj Materials Degradation, Год журнала: 2025, Номер 9(1)

Опубликована: Фев. 14, 2025

Язык: Английский

Процитировано

1

Study on the pitting corrosion behavior of X65 steel in supercritical and dense-phase CO2 based on in-situ electrochemical noise measurement DOI
Guangyu Liu, Xinxin Fan, Cailin Wang

и другие.

Process Safety and Environmental Protection, Год журнала: 2025, Номер unknown, С. 107060 - 107060

Опубликована: Март 1, 2025

Язык: Английский

Процитировано

1

A Bayesian approach to assess under-deposit corrosion in oil and gas pipelines DOI

Uyen Dao,

Rioshar Yarveisy, Shams Anwar

и другие.

Process Safety and Environmental Protection, Год журнала: 2023, Номер 176, С. 489 - 505

Опубликована: Июнь 15, 2023

Язык: Английский

Процитировано

23