Optimal Condition-Based Maintenance Policy Considering Nested Conditional Value-at-Risk and Operational Availability: A Case Study on Semiconductor Manufacturing Equipment DOI
Donghyun An, Deok-Joo Lee

IISE Transactions, Год журнала: 2024, Номер unknown, С. 1 - 12

Опубликована: Окт. 7, 2024

To address concerns regarding economic risks and reliability issues in existing maintenance practices, this study introduces a novel condition-based model that considers failure terms of both cost availability. Utilizing Markov decision process, determines inspection intervals policies aimed at minimizing the nested conditional Value-at-Risk cumulative costs while satisfying operational availability constraints. By applying to plasma etching we demonstrated its effectiveness compared models. Additionally, found higher risk levels do not necessarily lead stricter policies, whereas achieving better incurs additional costs. These findings highlight importance balancing when determining an optimal policy.

Язык: Английский

Reinforcement Learning in Reliability and Maintenance Optimization: A Tutorial DOI
Qin Zhang, Yu Liu, Yisha Xiang

и другие.

Reliability Engineering & System Safety, Год журнала: 2024, Номер 251, С. 110401 - 110401

Опубликована: Июль 28, 2024

Язык: Английский

Процитировано

12

Deep reinforcement learning for intelligent risk optimization of buildings under hazard DOI
Ghazanfar Ali Anwar, Xiaoge Zhang

Reliability Engineering & System Safety, Год журнала: 2024, Номер 247, С. 110118 - 110118

Опубликована: Апрель 1, 2024

Язык: Английский

Процитировано

10

Multi-agent deep reinforcement learning based decision support model for resilient community post-hazard recovery DOI
Sen Yang, Yi Zhang, Xinzheng Lu

и другие.

Reliability Engineering & System Safety, Год журнала: 2023, Номер 242, С. 109754 - 109754

Опубликована: Окт. 23, 2023

Язык: Английский

Процитировано

22

A hybrid deep learning approach to integrate predictive maintenance and production planning for multi-state systems DOI Creative Commons

Hassan Dehghan Shoorkand,

Mustapha Nourelfath, Adnène Hajji

и другие.

Journal of Manufacturing Systems, Год журнала: 2024, Номер 74, С. 397 - 410

Опубликована: Апрель 11, 2024

This paper develops a data-driven approach to dynamically integrate tactical production and predictive maintenance planning for multi-state system composed of several series-parallel machines. The objective is determine an integrated lot-sizing preventive strategy that will minimize the sum costs, while satisfying demand all products over entire horizon. A rolling horizon adopted continuously update plans based on new data obtained through sensors. Unlike existing models, we develop hybrid deep learning (DL) coordinate decisions multiple To accurately predict health condition each machine, developed DL method combines powers convolutional neural network (CNN), long-short-term memory (LSTM), attention technique. We use reliability theory estimate capacity. Furthermore, genetic algorithm solve large-scale problems. Benchmarking are used compare results our with model-based approach, pure LSTM, CNN-LSTM approach. comparison prediction accuracy, solution quality, computational time. show superiority suggested CNN-LSTM-attention framework integrating production.

Язык: Английский

Процитировано

7

Deep reinforcement learning for maintenance optimization of a scrap-based steel production line DOI Creative Commons
Waldomiro Alves Ferreira Neto, Cristiano Alexandre Virgínio Cavalcante, Phuc Do

и другие.

Reliability Engineering & System Safety, Год журнала: 2024, Номер 249, С. 110199 - 110199

Опубликована: Май 18, 2024

This paper presents a Deep Reinforcement Learning (DRL)-based optimization approach for determining the optimal inspection and maintenance planning of scrap-based steel production line. The DRL-based recommends adequate time inspections activities based on monitoring conditions line, such as machine productivity, buffer level, demand. Some practical aspects system, uncertainty duration variable rate machines, were considered. A line was modeled multi-component system considering components dependencies. simulation model developed to simulate dynamics assist with development DRL approach. proposed is compared traditional policies, reactive maintenance, time-based condition-based maintenance. In addition, different algorithms PPO (Proximal Policy Optimization), TRPO (Trust Region DQN (Deep Q-Network) are investigated in case-based scenario. findings indicated potential significant financial savings. Therefore, demonstrates adaptability has be powerful tool industrial competitiveness.

Язык: Английский

Процитировано

6

Optimal replacement policy for a two-unit system subject to shocks and cumulative damage DOI
Shey‐Huei Sheu, Tzu‐Hsin Liu, Wei-Teng Sheu

и другие.

Reliability Engineering & System Safety, Год журнала: 2023, Номер 238, С. 109420 - 109420

Опубликована: Июнь 15, 2023

Язык: Английский

Процитировано

11

Kernel Reinforcement Learning for sampling-efficient risk management of large-scale engineering systems DOI
Dingyang Zhang, Yiming Zhang, Pei Li

и другие.

Reliability Engineering & System Safety, Год журнала: 2025, Номер unknown, С. 111022 - 111022

Опубликована: Март 1, 2025

Язык: Английский

Процитировано

0

Reinforcement learning based maintenance scheduling of flexible multi-machine manufacturing systems with varying interactive degradation DOI
Jiangxi Chen, Xiaojun Zhou

Reliability Engineering & System Safety, Год журнала: 2025, Номер unknown, С. 111018 - 111018

Опубликована: Март 1, 2025

Язык: Английский

Процитировано

0

Alleviating confirmation bias in perpetually dynamic environments: Continuous unsupervised domain adaptation-based condition monitoring (CUDACoM) DOI Creative Commons
Mohamed Abubakr, Chi-Guhn Lee

Engineering Applications of Artificial Intelligence, Год журнала: 2024, Номер 137, С. 109057 - 109057

Опубликована: Авг. 10, 2024

Язык: Английский

Процитировано

3

Dynamic production scheduling and maintenance planning under opportunistic grouping DOI

Nada Ouahabi,

Ahmed Chebak,

Oulaïd Kamach

и другие.

Computers & Industrial Engineering, Год журнала: 2024, Номер unknown, С. 110646 - 110646

Опубликована: Окт. 1, 2024

Язык: Английский

Процитировано

3