Degradation and Failure Mechanisms of Lithium/LiNixCoyMn1–xyO2 Batteries DOI Creative Commons
Jia Guo, Pengwei Li, F. Del Piccolo

и другие.

ACS Energy Letters, Год журнала: 2025, Номер unknown, С. 2318 - 2340

Опубликована: Апрель 15, 2025

State of health prediction of lithium-ion batteries under early partial data based on IWOA-BiLSTM with single feature DOI
Yan Ma, Jiaqi Li, Jinwu Gao

и другие.

Energy, Год журнала: 2024, Номер 295, С. 131085 - 131085

Опубликована: Март 23, 2024

Язык: Английский

Процитировано

27

A review of data-driven whole-life state of health prediction for lithium-ion batteries: Data preprocessing, aging characteristics, algorithms, and future challenges DOI
Yanxin Xie, Shunli Wang, Gexiang Zhang

и другие.

Journal of Energy Chemistry, Год журнала: 2024, Номер 97, С. 630 - 649

Опубликована: Июнь 19, 2024

Язык: Английский

Процитировано

26

Exploring Lithium-Ion Battery Degradation: A Concise Review of Critical Factors, Impacts, Data-Driven Degradation Estimation Techniques, and Sustainable Directions for Energy Storage Systems DOI Creative Commons
Tuhibur Rahman, Talal Alharbi

Batteries, Год журнала: 2024, Номер 10(7), С. 220 - 220

Опубликована: Июнь 22, 2024

Batteries play a crucial role in the domain of energy storage systems and electric vehicles by enabling resilience, promoting renewable integration, driving advancement eco-friendly mobility. However, degradation batteries over time remains significant challenge. This paper presents comprehensive review aimed at investigating intricate phenomenon battery within realm sustainable (EVs). consolidates current knowledge on diverse array factors influencing mechanisms, encompassing thermal stresses, cycling patterns, chemical reactions, environmental conditions. The key lithium-ion such as electrolyte breakdown, cycling, temperature, calendar aging, depth discharge are thoroughly discussed. Along with factor, impacts these including capacity fade, reduction density, increase internal resistance, overall efficiency have also been highlighted throughout paper. Additionally, data-driven approaches estimation taken into consideration. Furthermore, this delves multifaceted performance, longevity, sustainability EVs. Finally, main drawbacks, issues challenges related to lifespan addressed. Recommendations, best practices, future directions provided overcome towards system.

Язык: Английский

Процитировано

25

A novel method for remaining useful life of solid-state lithium-ion battery based on improved CNN and health indicators derivation DOI

Yan Ma,

Zhenxi Wang,

Jinwu Gao

и другие.

Mechanical Systems and Signal Processing, Год журнала: 2024, Номер 220, С. 111646 - 111646

Опубликована: Июль 1, 2024

Язык: Английский

Процитировано

17

State-of-health estimation method for fast-charging lithium-ion batteries based on stacking ensemble sparse Gaussian process regression DOI
Fang Li, Yongjun Min, Ying Zhang

и другие.

Reliability Engineering & System Safety, Год журнала: 2023, Номер 242, С. 109787 - 109787

Опубликована: Ноя. 7, 2023

Язык: Английский

Процитировано

33

Vehicle-cloud-collaborated prognosis and health management for lithium-ion batteries: framework, technics and perspective DOI
Sida Zhou,

Gao Zichao,

Honglei Dong

и другие.

Energy storage materials, Год журнала: 2024, Номер 70, С. 103531 - 103531

Опубликована: Июнь 1, 2024

Язык: Английский

Процитировано

8

Physics-informed Machine Learning for Accurate SOH Estimation of Lithium-ion Batteries Considering Various Temperatures and Operating Conditions DOI

Chunsong Lin,

Xianguo Tuo, Longxing Wu

и другие.

Energy, Год журнала: 2025, Номер unknown, С. 134937 - 134937

Опубликована: Фев. 1, 2025

Язык: Английский

Процитировано

1

An adaptive mixture prior in Bayesian convolutional autoencoder for early detecting anomalous degradation behaviors in lithium-ion batteries DOI
Sun Geu Chae, Suk Joo Bae

Reliability Engineering & System Safety, Год журнала: 2025, Номер unknown, С. 110926 - 110926

Опубликована: Фев. 1, 2025

Язык: Английский

Процитировано

1

Determination of Optimal Dataset Characteristics for Improving YOLO Performance in Agricultural Object Detection DOI Creative Commons
Jisu Song,

Dong-Seok Kim,

Eunji Jeong

и другие.

Agriculture, Год журнала: 2025, Номер 15(7), С. 731 - 731

Опубликована: Март 28, 2025

Recent advances in artificial intelligence and computer vision have led to significant progress the use of agricultural technologies for yield prediction, pest detection, real-time monitoring plant conditions. However, collecting large-scale, high-quality image datasets agriculture sector remains challenging, particularly specialized such as disease images. This study analyzed effects size (320–640+) number labels on performance a YOLO-based object detection model using diverse strawberries, tomatoes, chilies, peppers. Model was evaluated intersection over union average precision (AP), where AP curve smoothed Savitzky–Golay filter EEM. The results revealed that increasing improved certain degree, after which gradually diminished. Furthermore, while from 320 640 substantially enhanced performance, additional increases beyond yielded only marginal improvements. training time graphics processing unit usage scaled linearly with sizes, larger images require greater computational resources. These findings underscore importance an optimal strategy selecting label quantity under resource constraints real-world development.

Язык: Английский

Процитировано

1

Health prognostics of lithium-ion batteries based on universal voltage range features mining and adaptive multi-Gaussian process regression with Harris Hawks optimization algorithm DOI
Yongfang Guo, Xiangyuan Yu, Yashuang Wang

и другие.

Reliability Engineering & System Safety, Год журнала: 2023, Номер 244, С. 109913 - 109913

Опубликована: Дек. 30, 2023

Язык: Английский

Процитировано

16