Degradation and Failure Mechanisms of Lithium/LiNixCoyMn1–xyO2 Batteries DOI Creative Commons
Jia Guo, Pengwei Li, F. Del Piccolo

и другие.

ACS Energy Letters, Год журнала: 2025, Номер unknown, С. 2318 - 2340

Опубликована: Апрель 15, 2025

Battery Reliability Assessment in Electric Vehicles: A State-of-the-Art DOI Creative Commons
Joseph Omakor, Suruz Miah, Hicham Chaoui

и другие.

IEEE Access, Год журнала: 2024, Номер 12, С. 77903 - 77931

Опубликована: Янв. 1, 2024

Lithium-ion (Li-ion) batteries are being used in electric vehicles to reduce the reliance on fossil fuels due their high energy density, design flexibility, and efficiency compared other battery technologies. However, they undergo complex nonlinear degradation performance declines when abused, making reliability crucial for effective vehicle performance. This survey paper presents a comprehensive review of state-of-the-art assessments vehicles. First, operating principle Li-ion batteries, patterns, models briefly discussed. Afterwards, detailed qualitative quantitative approaches. The approach encompasses failure modes mechanisms effects analysis, X-ray computed tomography, scanning electron microscopy. In contrast, approaches involve multiphysics modelling, electrochemical impedance spectroscopy, incremental capacity differential voltage machine learning, transfer learning. Each technique is examined terms its principles, advantages, limitations, applicability Comparative analysis reveals that methods primarily early stages assess potential risks post-mortem laboratory, while techniques such as learning offer real-time prognostic health management anomaly prevention. Also, tend be more cost-effective counterparts. consolidating through standardization testing protocols, real-world data integration, controller area network use, policy regulation highlighted guide further research.

Язык: Английский

Процитировано

7

A hybrid battery degradation model combining arrhenius equation and neural network for capacity prediction under time-varying operating conditions DOI
Zhen Chen, Zirong Wang, Wei Wu

и другие.

Reliability Engineering & System Safety, Год журнала: 2024, Номер 252, С. 110471 - 110471

Опубликована: Авг. 27, 2024

Язык: Английский

Процитировано

7

A health assessment method with attribute importance modeling for complex systems using belief rule base DOI
Zheng Lian, Zhijie Zhou, Changhua Hu

и другие.

Reliability Engineering & System Safety, Год журнала: 2024, Номер 251, С. 110387 - 110387

Опубликована: Июль 29, 2024

Язык: Английский

Процитировано

6

SOH estimation method for lithium-ion batteries under low temperature conditions with nonlinear correction DOI

Zhenhai Gao,

Haicheng Xie, Xianbin Yang

и другие.

Journal of Energy Storage, Год журнала: 2023, Номер 75, С. 109690 - 109690

Опубликована: Ноя. 19, 2023

Язык: Английский

Процитировано

14

Towards an intelligent battery management system for electric vehicle applications: Dataset considerations, algorithmic approaches, and future trends DOI
Zhiqiang Lyu, Longxing Wu,

Mohan Lyu

и другие.

Journal of Energy Storage, Год журнала: 2024, Номер 101, С. 113827 - 113827

Опубликована: Сен. 25, 2024

Язык: Английский

Процитировано

5

Lithium-Ion Battery State of Health and Failure Analysis with Mixture Weibull and Equivalent Circuit Model DOI Creative Commons

Weiting Hu,

Quan Qian

iScience, Год журнала: 2024, Номер 27(6), С. 109980 - 109980

Опубликована: Май 20, 2024

Existing methods for interpreting Electrochemical Impedance Spectroscopy data involve various models, which face significant challenges in parameterization and physical interpretation fail to comprehensively reflect the electrochemical behavior within batteries. To address these issues, this study proposes a Temperature-Controlled Second-Order R-CPE Equivalent Circuit Model capture non-ideal capacitive characteristics of electrode surfaces. Additionally, employs Copula based Joint Mixture Weibull multi-output Gaussian Process Regression enhance precision capturing distribution battery parameters predict SoH curves. Experimental validation shows that model used article has an average RMSE error 8.5%, prediction curve after 100th cycle can achieve 9.2%. These findings provide insightful implications understanding complexities parameter interdependencies aging process, offering robust framework future research diagnostics.

Язык: Английский

Процитировано

4

Capacity fading knee-point recognition method and life prediction for lithium-ion batteries using segmented capacity degradation model DOI
Jianping Zhang, Yinjie Zhang, Jianbo Fu

и другие.

Reliability Engineering & System Safety, Год журнала: 2024, Номер 251, С. 110395 - 110395

Опубликована: Июль 23, 2024

Язык: Английский

Процитировано

4

State of Health Estimation of Lithium-Ion Batteries Based on Hybrid Neural Networks with Residual Connections DOI Creative Commons
Xugang Zhang, Ze Wang, Qingshan Gong

и другие.

Journal of The Electrochemical Society, Год журнала: 2025, Номер 172(2), С. 020503 - 020503

Опубликована: Янв. 23, 2025

Accurately estimating the state of health (SOH) lithium-ion batteries is essential for ensuring stability and safety battery. Although hybrid neural network model demonstrates strong performance in SOH, degradation becomes a significant issue as depth increases, potentially undermining accuracy estimation. This paper presents estimation with residual connections to address degradation. First, utilizes combination convolutional networks an attention mechanism automatically extract feature information highly correlated SOH from partial charging data batteries. Subsequently, multi-layer gated recurrent unit (GRU) employed capture temporal within extracted features. To that arises stacking multiple layers networks, are incorporated into GRUs, mitigating accumulation errors deep networks. Finally, three distinct datasets validate proposed model. The experimental results demonstrate exhibits average mean absolute error root square less than 1.8% on both these datasets.

Язык: Английский

Процитировано

0

A comprehensive review of pre-treatment discharge of the spent lithium-ion cells DOI
Yanyan Liu,

Shu Zhong-jun,

Yi‐hong Ding

и другие.

Journal of Energy Storage, Год журнала: 2025, Номер 112, С. 115497 - 115497

Опубликована: Янв. 24, 2025

Язык: Английский

Процитировано

0

Early prediction of battery lifetime for lithium-ion batteries based on a hybrid clustered CNN model DOI
Jing Hou,

Taian Su,

Tian Gao

и другие.

Energy, Год журнала: 2025, Номер unknown, С. 134992 - 134992

Опубликована: Фев. 1, 2025

Язык: Английский

Процитировано

0