
Research Square (Research Square), Год журнала: 2025, Номер unknown
Опубликована: Янв. 15, 2025
Язык: Английский
Research Square (Research Square), Год журнала: 2025, Номер unknown
Опубликована: Янв. 15, 2025
Язык: Английский
Reliability Engineering & System Safety, Год журнала: 2024, Номер 249, С. 110201 - 110201
Опубликована: Май 14, 2024
Язык: Английский
Процитировано
24Reliability Engineering & System Safety, Год журнала: 2024, Номер 249, С. 110187 - 110187
Опубликована: Май 15, 2024
Ship collision accidents are one of the most frequent accident types in global maritime transportation. Nevertheless, conducting an in-depth analysis prevention poses a formidable challenge due to constraints limited Risk Influential Factors (RIFs) and available datasets. This paper aims incorporate perspective into new data-driven risk model, scrutinize root causes accidents, advance measures for their mitigation. Additionally, it seeks analyze spatial distribution conduct comprehensive comparative study on characteristics both pre- post-COVID-19, utilizing real dataset collected from two reputable organizations: Global Integrated Shipping Information System (GISIS) Lloyd's Register Fairplay (LRF). The research findings implications encompass several crucial aspects: 1) constructed model demonstrates its reliability accuracy predicting as evident prediction performance various scenario analysis; 2) hazardous voyage segment is identified provide valuable guidance different stakeholders; 3) hierarchical significance ship context highlighted regarding probable occurrences; 4) During pandemic, rise probabilities, particularly involving older vessels bulk carriers, implies heightened operational challenges or maintenance issues these types; (5) prominence favorable adverse sea conditions reports underscores significant influence weather during pandemic. These help enhance safety protocols, ultimately reducing frequency domain.
Язык: Английский
Процитировано
23Reliability Engineering & System Safety, Год журнала: 2024, Номер 250, С. 110311 - 110311
Опубликована: Июль 1, 2024
Язык: Английский
Процитировано
18Reliability Engineering & System Safety, Год журнала: 2025, Номер 257, С. 110875 - 110875
Опубликована: Янв. 31, 2025
Язык: Английский
Процитировано
5Reliability Engineering & System Safety, Год журнала: 2024, Номер 251, С. 110344 - 110344
Опубликована: Июль 11, 2024
Язык: Английский
Процитировано
17Reliability Engineering & System Safety, Год журнала: 2024, Номер 251, С. 110317 - 110317
Опубликована: Ноя. 1, 2024
Язык: Английский
Процитировано
15Ocean Engineering, Год журнала: 2024, Номер 302, С. 117610 - 117610
Опубликована: Март 28, 2024
Язык: Английский
Процитировано
13Maritime Economics & Logistics, Год журнала: 2024, Номер 26(1), С. 44 - 73
Опубликована: Фев. 16, 2024
Язык: Английский
Процитировано
12Reliability Engineering & System Safety, Год журнала: 2024, Номер 247, С. 110046 - 110046
Опубликована: Фев. 29, 2024
There is great interest in the practical use of autonomous ships. Although it important to identify and address serious hazards at initial design stage when constructing complicated large-scale systems, difficult capture entire structure such a system. To this issue, study, we propose model–based hazard identification (SMB-HAZID) method, which suitable for performing The primary feature method using task (ST) diagrams, checklist, keywords. includes modeling that can describe overall system together with each component's tasks, information necessary execution, interactions among components an ST diagram. In addition, paper presents example perform hypothetical ship early stage. Through trial application, confirmed SMB-HAZID analyzing within ship. our future research, will improve proposed by developing incorporating technique quantifying or semi-quantifying risks corresponding identified hazards.
Язык: Английский
Процитировано
12Reliability Engineering & System Safety, Год журнала: 2025, Номер unknown, С. 110856 - 110856
Опубликована: Янв. 1, 2025
Язык: Английский
Процитировано
2