A multi-objective ship voyage optimisation method within sulfur emission control zones DOI Creative Commons

Zhaofeng Song,

Jinfen Zhang, Wuliu Tian

и другие.

Ocean Engineering, Год журнала: 2024, Номер 319, С. 120192 - 120192

Опубликована: Дек. 30, 2024

Язык: Английский

A game-based decision-making method for multi-ship collaborative collision avoidance reflecting risk attitudes in open waters DOI
Jiongjiong Liu, Jinfen Zhang, Zaili Yang

и другие.

Ocean & Coastal Management, Год журнала: 2024, Номер 259, С. 107450 - 107450

Опубликована: Окт. 23, 2024

Язык: Английский

Процитировано

7

Vessel scheduling in multi-basin coastal ports affected by tidal currents DOI
Jingyao Wang, Kezhong Liu,

Yuerong Yu

и другие.

Ocean Engineering, Год журнала: 2025, Номер 325, С. 120822 - 120822

Опубликована: Март 3, 2025

Язык: Английский

Процитировано

0

Differential Evolution Deep Reinforcement Learning Algorithm for Dynamic Multiship Collision Avoidance with COLREGs Compliance DOI Creative Commons
Yang Shen, Zuowen Liao, Dan Chen

и другие.

Journal of Marine Science and Engineering, Год журнала: 2025, Номер 13(3), С. 596 - 596

Опубликована: Март 17, 2025

In ship navigation, determining a safe and economic path from start to destination under dynamic complex environment is essential, but the traditional algorithms of current research are inefficient. Therefore, novel differential evolution deep reinforcement learning algorithm (DEDRL) proposed address problems, which composed local planning global planning. The Deep Q-Network utilized search best in target multiple-obstacles scenarios. Furthermore, course-punishing reward mechanism introduced optimize constrain detected length as short possible. Quaternion domain COLREGs involved construct collision risk detection model. Compared with other algorithms, experimental results demonstrate that DEDRL achieved 28.4539 n miles, also performed all scenarios Overall, reliable robust for it provides an efficient solution avoidance.

Язык: Английский

Процитировано

0

Enabling autonomous navigation: adaptive multi-source risk quantification in maritime transportation DOI Creative Commons
Lichao Yang, Jingxian Liu, Quanlin Zhou

и другие.

Reliability Engineering & System Safety, Год журнала: 2025, Номер unknown, С. 111118 - 111118

Опубликована: Апрель 1, 2025

Процитировано

0

A methodology for data-driven risk analysis based on virtual-reality-generated information and generative adversarial network DOI
Huixing Meng, J. Y. Liao,

Jiali Liang

и другие.

Reliability Engineering & System Safety, Год журнала: 2025, Номер unknown, С. 111157 - 111157

Опубликована: Апрель 1, 2025

Язык: Английский

Процитировано

0

Simulation Modeling of Super-Large Ships Traffic: Insights from Ningbo-Zhoushan Port for Coastal Port Management DOI
Jingyao Wang, Kezhong Liu,

Zhitao Yuan

и другие.

Simulation Modelling Practice and Theory, Год журнала: 2024, Номер 138, С. 103039 - 103039

Опубликована: Ноя. 13, 2024

Язык: Английский

Процитировано

3

A novel collaborative collision avoidance decision-making methodology based on potential collision areas for intelligent navigation DOI

J.M. Liu,

Jinfen Zhang, Mingyang Zhang

и другие.

Ocean Engineering, Год журнала: 2024, Номер 318, С. 120126 - 120126

Опубликована: Дек. 20, 2024

Язык: Английский

Процитировано

2

Dynamic Calculation Approach of the Collision Risk in Complex Navigable Water DOI Open Access

YiHan Chen,

Qing Yu, Weiqiang Wang

и другие.

Опубликована: Авг. 16, 2024

It is vital to analyze ship collision risk for preventing collisions and improving safety at sea. This paper takes Ningbo-Zhoushan Port, a typical complex navigable water, as the research object, propose probabilistic conflict detection method estimate potential by using dynamic domain model driven AIS data. Combined with algorithm of fast modularity optimization spectral clustering, group extraction from perspective water navigation management was proposed. Aiming traffic characteristics in waters, conduct calculation individual, regional local multi-scale perspectives. The results show that proposed can detect timely, reliable effective manner under conditions. As such, they provide valuable insights prediction development mitigation measures.

Язык: Английский

Процитировано

1

Traffic advisory for ship encounter situation based on linear dynamic system DOI
Zhongyi Sui, Shuaian Wang

Reliability Engineering & System Safety, Год журнала: 2024, Номер unknown, С. 110591 - 110591

Опубликована: Окт. 1, 2024

Язык: Английский

Процитировано

1

A data-driven bayesian network model for risk influencing factors quantification based on global maritime accident database DOI
Haiyang Jiang, Jinfen Zhang, Chengpeng Wan

и другие.

Ocean & Coastal Management, Год журнала: 2024, Номер 259, С. 107473 - 107473

Опубликована: Ноя. 19, 2024

Язык: Английский

Процитировано

1