
Ocean Engineering, Год журнала: 2024, Номер 319, С. 120192 - 120192
Опубликована: Дек. 30, 2024
Язык: Английский
Ocean Engineering, Год журнала: 2024, Номер 319, С. 120192 - 120192
Опубликована: Дек. 30, 2024
Язык: Английский
Ocean & Coastal Management, Год журнала: 2024, Номер 259, С. 107450 - 107450
Опубликована: Окт. 23, 2024
Язык: Английский
Процитировано
7Ocean Engineering, Год журнала: 2025, Номер 325, С. 120822 - 120822
Опубликована: Март 3, 2025
Язык: Английский
Процитировано
0Journal of Marine Science and Engineering, Год журнала: 2025, Номер 13(3), С. 596 - 596
Опубликована: Март 17, 2025
In ship navigation, determining a safe and economic path from start to destination under dynamic complex environment is essential, but the traditional algorithms of current research are inefficient. Therefore, novel differential evolution deep reinforcement learning algorithm (DEDRL) proposed address problems, which composed local planning global planning. The Deep Q-Network utilized search best in target multiple-obstacles scenarios. Furthermore, course-punishing reward mechanism introduced optimize constrain detected length as short possible. Quaternion domain COLREGs involved construct collision risk detection model. Compared with other algorithms, experimental results demonstrate that DEDRL achieved 28.4539 n miles, also performed all scenarios Overall, reliable robust for it provides an efficient solution avoidance.
Язык: Английский
Процитировано
0Reliability Engineering & System Safety, Год журнала: 2025, Номер unknown, С. 111118 - 111118
Опубликована: Апрель 1, 2025
Процитировано
0Reliability Engineering & System Safety, Год журнала: 2025, Номер unknown, С. 111157 - 111157
Опубликована: Апрель 1, 2025
Язык: Английский
Процитировано
0Simulation Modelling Practice and Theory, Год журнала: 2024, Номер 138, С. 103039 - 103039
Опубликована: Ноя. 13, 2024
Язык: Английский
Процитировано
3Ocean Engineering, Год журнала: 2024, Номер 318, С. 120126 - 120126
Опубликована: Дек. 20, 2024
Язык: Английский
Процитировано
2Опубликована: Авг. 16, 2024
It is vital to analyze ship collision risk for preventing collisions and improving safety at sea. This paper takes Ningbo-Zhoushan Port, a typical complex navigable water, as the research object, propose probabilistic conflict detection method estimate potential by using dynamic domain model driven AIS data. Combined with algorithm of fast modularity optimization spectral clustering, group extraction from perspective water navigation management was proposed. Aiming traffic characteristics in waters, conduct calculation individual, regional local multi-scale perspectives. The results show that proposed can detect timely, reliable effective manner under conditions. As such, they provide valuable insights prediction development mitigation measures.
Язык: Английский
Процитировано
1Reliability Engineering & System Safety, Год журнала: 2024, Номер unknown, С. 110591 - 110591
Опубликована: Окт. 1, 2024
Язык: Английский
Процитировано
1Ocean & Coastal Management, Год журнала: 2024, Номер 259, С. 107473 - 107473
Опубликована: Ноя. 19, 2024
Язык: Английский
Процитировано
1