Short-term wind speed prediction based on temporal convolutional networks DOI

Sicheng Fan

2022 IEEE 10th Joint International Information Technology and Artificial Intelligence Conference (ITAIC), Год журнала: 2023, Номер unknown, С. 165 - 169

Опубликована: Дек. 8, 2023

To improve the utilization efficiency of wind energy, this research proposes a hybrid model based on Temporal Convolutional Network (TCN) and two-level speed decomposition. Firstly, original data is decomposed into main residual signals through Singular Spectrum Analysis (SSA). Then, usage Variational mode decomposition (VMD) decomposes several sub-sequences. The next step involves predicting signal all sub-sequences using TCN. Eventually, Grey Wolf Optimizer (GWO) employed to perform optimization stack prediction results, resulting in outcomes. results demonstrate that proposed SSA-VMD-TCN-GWO outperforms reference models. Thus, provides new solution

Язык: Английский

Application of Meta-Heuristic Algorithms for Training Neural Networks and Deep Learning Architectures: A Comprehensive Review DOI Open Access
Mehrdad Kaveh, Mohammad Saadi Mesgari

Neural Processing Letters, Год журнала: 2022, Номер 55(4), С. 4519 - 4622

Опубликована: Окт. 31, 2022

Язык: Английский

Процитировано

135

SCADA system dataset exploration and machine learning based forecast for wind turbines DOI
Upma Singh, M. Rizwan

Results in Engineering, Год журнала: 2022, Номер 16, С. 100640 - 100640

Опубликована: Сен. 13, 2022

Язык: Английский

Процитировано

42

A Comprehensive Survey on Aquila Optimizer DOI Open Access
Buddhadev Sasmal, Abdelazim G. Hussien, Arunita Das

и другие.

Archives of Computational Methods in Engineering, Год журнала: 2023, Номер 30(7), С. 4449 - 4476

Опубликована: Июнь 7, 2023

Язык: Английский

Процитировано

37

Wind speed prediction and reconstruction based on improved grey wolf optimization algorithm and deep learning networks DOI
Anfeng Zhu, Qiancheng Zhao, Tianlong Yang

и другие.

Computers & Electrical Engineering, Год журнала: 2024, Номер 114, С. 109074 - 109074

Опубликована: Янв. 18, 2024

Язык: Английский

Процитировано

17

A comparison of Holts-Winter and Artificial Neural Network approach in forecasting: A case study for tent manufacturing industry DOI Creative Commons

George Rumbe,

Mohammad M. Hamasha, Sahar ALMashaqbeh

и другие.

Results in Engineering, Год журнала: 2024, Номер 21, С. 101899 - 101899

Опубликована: Фев. 12, 2024

The imperative of accurate forecasting spans diverse industrial sectors, notably impacting the tent manufacturing industry. This study embarks on a rigorous examination and development novel models, specifically tailored for this sector. We introduce juxtapose two distinct approaches: Holt-Winters method Artificial Neural Networks (ANN). Our analysis is grounded in case company, delving into dynamics demand variation, particularly under seasonal influences. Through meticulous comparison, we demonstrate efficacy ANN model, highlighting its superior accuracy forecasting, especially Elite Party Canopy albeit with noted prediction error 15% Vista tents. paper also explores broader supply chain context industry, examining influential factors affecting commercial sales identifying key players. findings underscore nuanced capabilities capturing intricate patterns, offering promising direction refining practices

Язык: Английский

Процитировано

9

A soft sensor model based on CNN-BiLSTM and IHHO algorithm for Tennessee Eastman process DOI
Yiman Li, Peng Tian, Wei Sun

и другие.

Measurement, Год журнала: 2023, Номер 218, С. 113195 - 113195

Опубликована: Июнь 11, 2023

Язык: Английский

Процитировано

14

Review of AI-Based Wind Prediction within Recent Three Years: 2021–2023 DOI Creative Commons
Dongran Song, Xiao Tan, Qian Huang

и другие.

Energies, Год журнала: 2024, Номер 17(6), С. 1270 - 1270

Опубликована: Март 7, 2024

Wind prediction has consistently been in the spotlight as a crucial element achieving efficient wind power generation and reducing operational costs. In recent years, with rapid advancement of artificial intelligence (AI) technology, its application field made significant strides. Focusing on process AI-based modeling, this paper provides comprehensive summary discussion key techniques models data preprocessing, feature extraction, relationship learning, parameter optimization. Building upon this, three major challenges are identified prediction: uncertainty data, incompleteness complexity learning. response to these challenges, targeted suggestions proposed for future research directions, aiming promote effective AI technology address issues therein.

Язык: Английский

Процитировано

6

Electricity demand forecasting based on feature extraction and optimized backpropagation neural network DOI Creative Commons
Eric Ofori-Ntow, Yao Yevenyo Ziggah

e-Prime - Advances in Electrical Engineering Electronics and Energy, Год журнала: 2023, Номер 6, С. 100293 - 100293

Опубликована: Сен. 21, 2023

As the global population is growing at a high rate, so electricity demand also increasing faster rate. This exerts pressure on electricity-generating plants and maintenance engineers because of variability in demand. Avoiding disruption supply to meet requires forecasting what future will look like be able plan adequately towards it. study, therefore, develops new model using feature extraction (FE) where statistical information hourly data extracted which serves as input variables for Backpropagation neural network (BPNN) optimized by particle swarm optimization (PSO) Ghana. The known FE-PSO-BPNN compared other seven models such Radial Basis Function (RBFNN), Random Forest (RF), Gradient Boosting Machine (GBM), Multivariate Adaptive Regression Splines (MARS), BPNN, PSO-RBFNN FE selects all models. Electricity from Ghana Grid Company period including 1st September 2018 30th November 2019 used testing model's performance. Evaluation criteria Root Mean Square Error (RMSE), Absolute (MAE), Percentage (MAPE), Scatter Index (SI) were used. proposed more powerful than others it has RMSE (0.5344), MAE (3.3845), MAPE (0.1773), SI (0.0003). expected better option sector managers when considering forecasting.

Язык: Английский

Процитировано

11

Enhancing predictions of blast-induced ground vibration in open-pit mines: Comparing swarm-based optimization algorithms to optimize self-organizing neural networks DOI
Hoang Nguyen, Xuan-Nam Bui, Erkan Topal

и другие.

International Journal of Coal Geology, Год журнала: 2023, Номер 275, С. 104294 - 104294

Опубликована: Июнь 15, 2023

Язык: Английский

Процитировано

10

Enhanced Streamflow Forecasting for Crisis Management Based on Hybrid Extreme Gradient Boosting Model DOI
Hamed Khajavi, Amir Rastgoo, Fariborz Masoumi

и другие.

Iranian Journal of Science and Technology Transactions of Civil Engineering, Год журнала: 2025, Номер unknown

Опубликована: Янв. 13, 2025

Язык: Английский

Процитировано

0