Design for Electrical Energy Storage System Using Machine Learning Application DOI
Takveer Singh

Опубликована: Фев. 9, 2024

Clean energy, typified by solar energy and wind is employed to transform the structure solve problems with environment. However, generation of or electricity uncertain owing environmental consequences. Eliminating instability a critical method, lithium batteries offer an option that becoming more established. A capacity too big would result in waste increased expenses, while small conflict scheduling. The quantity can be stored also controlled power consumption, even if large industrial demand inconsistent. For this demanding problem, design deploys as well having considerable loading essential. battery installation model battery's cycle life were taken into consideration part management utilizing data on electric consumption production estate. performance these grid imposed constraints system's ability provide optimum storage minimizing operating expenditures. With cost adequate because optimization objectives needs constraints, DDPG technique (Deep-Deterministic-Policy-Gradient) was utilized. simulation demonstrate that, compared present sources, three ways lowered volume operation system 19.1%.

Язык: Английский

Applying ensemble machine learning models to predict hydrogen production rates from conventional and novel solar PV/T water collectors DOI

Sridharan Mohan

International Journal of Hydrogen Energy, Год журнала: 2025, Номер 102, С. 1377 - 1398

Опубликована: Янв. 17, 2025

Язык: Английский

Процитировано

2

A Hybrid Multiscale Feature Fusion Model For Enhanced Cardiovascular Arrhythmia Detection DOI Creative Commons
Md. Alamin Talukder

Results in Engineering, Год журнала: 2025, Номер unknown, С. 104244 - 104244

Опубликована: Фев. 1, 2025

Язык: Английский

Процитировано

2

Heart abnormality classification using ECG and PCG recordings with novel PJM-DJRNN DOI Creative Commons

Nadikatla Chandrasekhar,

Sujatha Canavoy Narahari,

Sreedhar Kollem

и другие.

Results in Engineering, Год журнала: 2025, Номер 25, С. 104032 - 104032

Опубликована: Янв. 18, 2025

Язык: Английский

Процитировано

1

Utilizing Voting Classifiers for Enhanced Analysis and Diagnosis of Cardiac Conditions DOI Creative Commons
Mohamed S. Elgendy, Hossam El-Din Moustafa, Hala B. Nafea

и другие.

Results in Engineering, Год журнала: 2025, Номер unknown, С. 104636 - 104636

Опубликована: Март 1, 2025

Язык: Английский

Процитировано

1

Deep hybrid architecture with stacked ensemble learning for binary classification of retinal disease DOI Creative Commons

C. Priyadharsini,

Asnath Victy Phamila Y

Results in Engineering, Год журнала: 2024, Номер unknown, С. 103219 - 103219

Опубликована: Окт. 1, 2024

Язык: Английский

Процитировано

4

Heart disease detection using novel ensemble approach: RF- GB-SVM stacking classifier DOI Open Access
M. S.,

N. Harshini,

J. Felicia Lilian

и другие.

Procedia Computer Science, Год журнала: 2025, Номер 258, С. 2647 - 2658

Опубликована: Янв. 1, 2025

Язык: Английский

Процитировано

0

Sleep stages detection based on analysis and optimisation of non-linear brain signal parameters DOI Creative Commons
Abdeljalil El Hadiri, Lhoussain Bahatti, Abdelmounime El Magri

и другие.

Results in Engineering, Год журнала: 2024, Номер 23, С. 102664 - 102664

Опубликована: Авг. 5, 2024

The analysis and detection of sleep stages continue to preoccupy researchers, particularly bioinformaticians neurologists aiming understand various aspects functioning the brain during cycles. This understanding is crucial for developing systems capable early diagnosis disorders adapting these use in operating rooms monitor activity patients under sedation or anesthesia. In this study, we apply a set methods process decompose single-channel EEG neural signal into different waves such as beta, alpha, theta, delta. We then focus on optimization extracted non-linear features using Principal Component Analysis (PCA) improve performance robustness classification six stages. Classifier validation performed cross-validation method. results show that when dimensions combined are reduced, RF-PCA model achieves an accuracy 95.2%, outperforming other models MLP, SVM, DT, GB, well recent studies. These findings validate effectiveness system, indicating its potential embedded implementation practical applications disorder monitoring.

Язык: Английский

Процитировано

2

Performance evaluation of optimal ensemble learning approaches with PCA and LDA-based feature extraction for heart disease prediction DOI

Md Masud Karim Rabbi,

MA Bari, Tanoy Debnath

и другие.

Biomedical Signal Processing and Control, Год журнала: 2024, Номер 101, С. 107138 - 107138

Опубликована: Ноя. 16, 2024

Язык: Английский

Процитировано

2

A Comprehensive Review on Heart Disease Risk Prediction using Machine Learning and Deep Learning Algorithms DOI
Karna Vishnu Vardhana Reddy, K. Viswavardhan Reddy, Varaprasad Janamala

и другие.

Archives of Computational Methods in Engineering, Год журнала: 2024, Номер unknown

Опубликована: Окт. 17, 2024

Язык: Английский

Процитировано

1

Designing a hybrid stack ensemble model to enhance sepsis classification using data triangulation approach DOI Creative Commons

Safiya Parvin A.,

B. Saleena

Results in Engineering, Год журнала: 2024, Номер 25, С. 103748 - 103748

Опубликована: Дек. 17, 2024

Язык: Английский

Процитировано

1