Novel insights into halogenated carbazoles (HCZs) prediction in tap water: a comparative study of grey relational analysis-based neural networks DOI

Qianfeng He,

Wanting Xu, Guolong Chen

и другие.

Journal of Cleaner Production, Год журнала: 2024, Номер unknown, С. 144482 - 144482

Опубликована: Дек. 1, 2024

Язык: Английский

Optimal fixed-time sliding mode control for anti-lock braking systems based fuzzy logic and neural network DOI Creative Commons
Najlae Jennan, El Mehdi Mellouli

Results in Engineering, Год журнала: 2025, Номер unknown, С. 103921 - 103921

Опубликована: Янв. 1, 2025

Язык: Английский

Процитировано

2

Explainable ensemble learning framework for estimating corrosion rate in suspension bridge main cables DOI Creative Commons
Alejandro Jiménez Ríos, Mohamed El Amine Ben Seghier, Vagelis Plevris

и другие.

Results in Engineering, Год журнала: 2024, Номер 23, С. 102723 - 102723

Опубликована: Авг. 13, 2024

Язык: Английский

Процитировано

6

Optimization of Amine-Based Carbon Capture: Simulation and Energy Efficiency Analysis of Absorption Section DOI Creative Commons
Amin Hedayati Moghaddam, Morteza Esfandyari, Hossein Sakhaeinia

и другие.

Results in Engineering, Год журнала: 2024, Номер unknown, С. 103574 - 103574

Опубликована: Ноя. 1, 2024

Язык: Английский

Процитировано

6

Urban vegetation benefits in mediterranean cities for climate change adaptation and water usage efficiency – a case study in Algarve, Portugal DOI Creative Commons
Pedro Matias, Manuela Moreira da Silva,

João Teigão

и другие.

Frontiers in Environmental Science, Год журнала: 2025, Номер 13

Опубликована: Фев. 6, 2025

In the current climate change scenario, Mediterranean cities face heatwaves and reduced availability of freshwater alternated with intense precipitation events in short periods. The demand for water, especially urban tourism purposes, is rising, particularly coastal cities. importance integrating nature into cities, trees, has been studied its benefits adapting to improving quality life. However, water scarcity remains a limiting factor ensuring needs trees and, consequently, ecosystem services they provide. this study, we quantified (CO 2 sequestration storage, O production, air pollutants removal, hydrological effects as transpiration, intercepted avoided runoff) provided by vegetation Faro (Algarve, Portugal), detailed analysis three green spaces. We analyzed given spaces community preferences. Rainwater harvesting was an alternative source irrigation advantages cycle. found that across city sequesters 1.09 × 10 3 t. yr −1 CO , stores 4.01 t C, contributes pollutant removal = 114; 3.56 ; NO 313; SO 224; PM 872; 2.5 70) kg. prevents 861 m . surface runoff. general, people inquired use visit value city’s spaces, enjoy activities nature, have definite preferences regarding are available suggest actions improve these It confirmed order maintain their provides community, rainwater utmost relevance representing reduction drinking 4.20

Язык: Английский

Процитировано

0

Development of Machine Learning-Aided Rapid CFD Prediction for Optimal Urban Wind Environment Design DOI
Aiymzhan Baitureyeva, Tong Yang, Hua Sheng Wang

и другие.

Sustainable Cities and Society, Год журнала: 2025, Номер 121, С. 106208 - 106208

Опубликована: Фев. 16, 2025

Язык: Английский

Процитировано

0

A Deep Convolutional Generative Adversarial Network (DCGAN) for the fast estimation of pollutant dispersion fields in indoor environments DOI Creative Commons
Claudio Alanis Ruiz, M.G.L.C. Loomans, T. van Hooff

и другие.

Building and Environment, Год журнала: 2025, Номер unknown, С. 112856 - 112856

Опубликована: Март 1, 2025

Язык: Английский

Процитировано

0

Forecasting Used Car Prices Using Machine Learning DOI Creative Commons

Eni Khusnul Khotimah,

Dwiretno Istiyadi Swasono,

Gama Wisnu Fajarianto

и другие.

IT JOURNAL RESEARCH AND DEVELOPMENT, Год журнала: 2025, Номер 9(2), С. 123 - 139

Опубликована: Март 12, 2025

In an increasingly competitive era, it is crucial for car dealers and retailers to address the challenges of accurately determining prices used cars. To tackle these challenges, this study implements Machine Learning models predict accurately. By applying Artificial Neural Network (ANN) Random Forest Regression algorithms, research aims evaluate performance methods in predicting prices. The price data was obtained from Kaggle repository, consisting 14,657 entries that provide comprehensive information about analysis focuses on six main columns, including Brand, Model, Variant, Year, Mileage, estimate Model evaluation conducted using Mean Absolute Error (MAE) as primary metric. results show ANN model achieved a lower MAE (0.035) compared (0.047), indicating better These findings demonstrate effectiveness handling complexity non-linear relationships between variables involved forecasting Additionally, contributes implementation more accurate predictions, enabling automotive companies improve operational efficiency greater benefits community.

Язык: Английский

Процитировано

0

Artificial Neural Network for Air Pollutant Concentration Predictions Based on Aircraft Trajectories over Suvarnabhumi International Airport DOI Creative Commons
Patcharin Kamsing, Chunxiang Cao, Wuttichai Boonpook

и другие.

Atmosphere, Год журнала: 2025, Номер 16(4), С. 366 - 366

Опубликована: Март 24, 2025

Air pollutant concentration prediction is essential not only for effective air quality management but also planning aircraft and ground vehicle route networks in terminal areas. In this work, an artificial neural network (ANN) used to predict the levels of four types pollutants (CO, NO2, PM2.5, PM10) at Suvarnabhumi International Airport. By leveraging Automatic Dependent Surveillance-Broadcast (ADS-B) historical data, trajectory pattern clustering implemented by using K-means Gaussian mixture model (GMM) algorithms. Then, those patterns are inputted together with other flight data into ANN computation processes, resulting each kind focus pollutant. The results demonstrate that mean square errors (MSEs) predicted models CO PM2.5 have acceptable values 51.7622 53.9682, respectively, while NO2 PM10 has MSEs 139.6674 124.2517, respectively. This study contributes advancement methodologies, facilitating better decision-making proactive management, airports. Although some focused slightly high MSEs, further needed enhance capacity.

Язык: Английский

Процитировано

0

Novel feature selection based ANN for optimal solar panels tilt angles prediction in micro grid DOI Creative Commons
Amit Kumar Yadav, Amit Kumar Yadav, Ashwani Kumar

и другие.

Case Studies in Thermal Engineering, Год журнала: 2024, Номер 61, С. 104853 - 104853

Опубликована: Июль 17, 2024

Predicting PV system electricity output is necessary for daily operational management and annual power planning when integrating solar collector-based photovoltaic (PV) stations into micro grids. Tilting the panels at ideal angle to maximize energy capture station production. This optimal tilt (OTA) must be predicted as it a nonlinear function of total radiation, diffuse direct radiation. research explores use feature selection-based artificial neural networks (ANN) with various machine learning algorithms predict OTA systems specific locations, aiming in The study identifies global clarity index, radiation on inclined surfaces most critical inputs predicting OTA, while extraterrestrial deemed least significant. Implementing appropriate input variables significantly enhanced prediction accuracy from 38.59 % 90.72 %. Among evaluated, Elman network demonstrated greatest improvement.

Язык: Английский

Процитировано

3

Error prediction for machining thin-walled blade with Kriging model DOI Creative Commons

Jinhua Zhou,

Sitong Qian,

Tong‐Seok Han

и другие.

Results in Engineering, Год журнала: 2025, Номер unknown, С. 104645 - 104645

Опубликована: Март 1, 2025

Язык: Английский

Процитировано

0