Опубликована: Дек. 4, 2024
Язык: Английский
Опубликована: Дек. 4, 2024
Язык: Английский
Results in Engineering, Год журнала: 2025, Номер unknown, С. 104025 - 104025
Опубликована: Янв. 1, 2025
Язык: Английский
Процитировано
3Ain Shams Engineering Journal, Год журнала: 2025, Номер 16(2), С. 103241 - 103241
Опубликована: Янв. 13, 2025
Язык: Английский
Процитировано
1Computers in Biology and Medicine, Год журнала: 2025, Номер 189, С. 109916 - 109916
Опубликована: Март 6, 2025
Язык: Английский
Процитировано
1Bioengineering, Год журнала: 2024, Номер 11(7), С. 711 - 711
Опубликована: Июль 13, 2024
The rapid advancement of computational infrastructure has led to unprecedented growth in machine learning, deep and computer vision, fundamentally transforming the analysis retinal images. By utilizing a wide array visual cues extracted from fundus images, sophisticated artificial intelligence models have been developed diagnose various disorders. This paper concentrates on detection Age-Related Macular Degeneration (AMD), significant condition, by offering an exhaustive examination recent learning methodologies. Additionally, it discusses potential obstacles constraints associated with implementing this technology field ophthalmology. Through systematic review, research aims assess efficacy techniques discerning AMD different modalities as they shown promise disorders diagnosis. Organized around prevalent datasets imaging techniques, initially outlines assessment criteria, image preprocessing methodologies, frameworks before conducting thorough investigation diverse approaches for detection. Drawing insights more than 30 selected studies, conclusion underscores current trajectories, major challenges, future prospects diagnosis, providing valuable resource both scholars practitioners domain.
Язык: Английский
Процитировано
5Results in Engineering, Год журнала: 2024, Номер unknown, С. 103832 - 103832
Опубликована: Дек. 1, 2024
Язык: Английский
Процитировано
4Neuroinformatics, Год журнала: 2025, Номер 23(2)
Опубликована: Янв. 16, 2025
Язык: Английский
Процитировано
0Automation in Construction, Год журнала: 2025, Номер 172, С. 106072 - 106072
Опубликована: Фев. 19, 2025
Язык: Английский
Процитировано
0Optical Fiber Technology, Год журнала: 2025, Номер 93, С. 104206 - 104206
Опубликована: Март 20, 2025
Язык: Английский
Процитировано
0Frontiers in Computer Science, Год журнала: 2025, Номер 7
Опубликована: Апрель 10, 2025
Introduction Brain tumor (BT) classification is crucial yet challenging due to the complex and varied nature of these tumors. We present a novel approach combining Pyramid Vision Transformer (PVT) with an adaptive deformable attention mechanism Topological Data Analysis (TDA) address complexities BT detection. While PVT have been explored in prior work, we introduce key innovations enhance their performance for medical image analysis. Methods developed that dynamically adjusts receptive fields based on complexity, focusing critical regions MRI scans. The also incorporates sampling rate hierarchical dynamic position embeddings context-aware multi-scale feature extraction. Feature channels are partitioned into specialized groups via offset group improve diversity, strategy further integrates local global contexts yield refined representations. Additionally, applying TDA images extracts meaningful topological patterns, followed by Random Forest classifier final classification. Results method was evaluated Figshare brain dataset. It achieved 99.2% accuracy, 99.35% recall, 98.9% precision, 99.12% F1-score, Matthews correlation coefficient (MCC) 0.98, LogLoss 0.05, average processing time approximately 6 seconds per image. Discussion These results underscore method's ability combine detailed extraction insights, significantly improving accuracy efficiency proposed offers promising tool more reliable rapid diagnosis.
Язык: Английский
Процитировано
0Results in Engineering, Год журнала: 2025, Номер unknown, С. 104774 - 104774
Опубликована: Апрель 1, 2025
Язык: Английский
Процитировано
0