Review on Automated Brain Tumor Segmentation using Advanced Deep Learning Techniques: Enhancing Precision and Clinical Applicability DOI

V Vishalakshi,

T. Arunprasath,

Pallikonda Rajasekaran M

и другие.

Опубликована: Дек. 4, 2024

Язык: Английский

SAlexNet: Superimposed AlexNet using Residual Attention Mechanism for Accurate and Efficient Automatic Primary Brain Tumor Detection and Classification DOI Creative Commons

Qurat-ul-ain Chaudhary,

Shahzad Ahmad Qureshi,

Touseef Sadiq

и другие.

Results in Engineering, Год журнала: 2025, Номер unknown, С. 104025 - 104025

Опубликована: Янв. 1, 2025

Язык: Английский

Процитировано

3

Advancing multiple sclerosis diagnosis through an innovative hybrid AI framework incorporating Multi-view ResNet and quantum RIME-inspired metaheuristics DOI Creative Commons

Mohamed G. Khattap,

Mohammed Sallah, Abdelghani Dahou

и другие.

Ain Shams Engineering Journal, Год журнала: 2025, Номер 16(2), С. 103241 - 103241

Опубликована: Янв. 13, 2025

Язык: Английский

Процитировано

1

A multi-stage fusion deep learning framework merging local patterns with attention-driven contextual dependencies for cancer detection DOI
Hatice Çatal Reis, Veysel Turk

Computers in Biology and Medicine, Год журнала: 2025, Номер 189, С. 109916 - 109916

Опубликована: Март 6, 2025

Язык: Английский

Процитировано

1

A Comprehensive Review of AI Diagnosis Strategies for Age-Related Macular Degeneration (AMD) DOI Creative Commons

Aya A. Abd El-Khalek,

Hossam Magdy Balaha, Ashraf Sewelam

и другие.

Bioengineering, Год журнала: 2024, Номер 11(7), С. 711 - 711

Опубликована: Июль 13, 2024

The rapid advancement of computational infrastructure has led to unprecedented growth in machine learning, deep and computer vision, fundamentally transforming the analysis retinal images. By utilizing a wide array visual cues extracted from fundus images, sophisticated artificial intelligence models have been developed diagnose various disorders. This paper concentrates on detection Age-Related Macular Degeneration (AMD), significant condition, by offering an exhaustive examination recent learning methodologies. Additionally, it discusses potential obstacles constraints associated with implementing this technology field ophthalmology. Through systematic review, research aims assess efficacy techniques discerning AMD different modalities as they shown promise disorders diagnosis. Organized around prevalent datasets imaging techniques, initially outlines assessment criteria, image preprocessing methodologies, frameworks before conducting thorough investigation diverse approaches for detection. Drawing insights more than 30 selected studies, conclusion underscores current trajectories, major challenges, future prospects diagnosis, providing valuable resource both scholars practitioners domain.

Язык: Английский

Процитировано

5

Brain tumor detection across diverse MR images: An automated triple-module approach integrating reduced fused deep features and machine learning DOI Creative Commons

Yash Pande,

Jyotismita Chaki

Results in Engineering, Год журнала: 2024, Номер unknown, С. 103832 - 103832

Опубликована: Дек. 1, 2024

Язык: Английский

Процитировано

4

Predicting Paediatric Brain Disorders from MRI Images Using Advanced Deep Learning Techniques DOI
Yogesh Kumar, Priya Bhardwaj, Supriya Shrivastav

и другие.

Neuroinformatics, Год журнала: 2025, Номер 23(2)

Опубликована: Янв. 16, 2025

Язык: Английский

Процитировано

0

Automated fall risk classification for construction workers using wearable devices, BIM, and optimized hybrid deep learning DOI
Min‐Yuan Cheng,

Deyla V.N. Soegiono,

Akhmad F.K. Khitam

и другие.

Automation in Construction, Год журнала: 2025, Номер 172, С. 106072 - 106072

Опубликована: Фев. 19, 2025

Язык: Английский

Процитировано

0

Securing SDON with hybrid evolutionary intrusion detection system: An ensemble algorithm for feature selection and classification DOI

Benitha Christinal J,

Ameelia Roseline A

Optical Fiber Technology, Год журнала: 2025, Номер 93, С. 104206 - 104206

Опубликована: Март 20, 2025

Язык: Английский

Процитировано

0

Integrating pyramid vision transformer and topological data analysis for brain tumor DOI Creative Commons
Dhananjay Joshi, Bhupesh Kumar Singh,

Kapil Kumar Nagwanshi

и другие.

Frontiers in Computer Science, Год журнала: 2025, Номер 7

Опубликована: Апрель 10, 2025

Introduction Brain tumor (BT) classification is crucial yet challenging due to the complex and varied nature of these tumors. We present a novel approach combining Pyramid Vision Transformer (PVT) with an adaptive deformable attention mechanism Topological Data Analysis (TDA) address complexities BT detection. While PVT have been explored in prior work, we introduce key innovations enhance their performance for medical image analysis. Methods developed that dynamically adjusts receptive fields based on complexity, focusing critical regions MRI scans. The also incorporates sampling rate hierarchical dynamic position embeddings context-aware multi-scale feature extraction. Feature channels are partitioned into specialized groups via offset group improve diversity, strategy further integrates local global contexts yield refined representations. Additionally, applying TDA images extracts meaningful topological patterns, followed by Random Forest classifier final classification. Results method was evaluated Figshare brain dataset. It achieved 99.2% accuracy, 99.35% recall, 98.9% precision, 99.12% F1-score, Matthews correlation coefficient (MCC) 0.98, LogLoss 0.05, average processing time approximately 6 seconds per image. Discussion These results underscore method's ability combine detailed extraction insights, significantly improving accuracy efficiency proposed offers promising tool more reliable rapid diagnosis.

Язык: Английский

Процитировано

0

Enhanced Optimisation of MPLS Network Traffic using a Novel Adjustable Bat Algorithm with Loudness Optimizer DOI Creative Commons
Mohsin Masood,

Mohamed Mostafa Fouad,

Rashid Kamal

и другие.

Results in Engineering, Год журнала: 2025, Номер unknown, С. 104774 - 104774

Опубликована: Апрель 1, 2025

Язык: Английский

Процитировано

0