Leveraging transfer learning-driven convolutional neural network-based semantic segmentation model for medical image analysis using MRI images DOI Creative Commons
Amal Alshardan,

Nuha Alruwais,

Hamed Alqahtani

и другие.

Scientific Reports, Год журнала: 2024, Номер 14(1)

Опубликована: Дек. 18, 2024

Recognition and segmentation of brain tumours (BT) using MR images are valuable tedious processes in the healthcare industry. Earlier diagnosis localization BT provide timely options to select effective treatment plans for doctors can save lives. from Magnetic Resonance Images (MRI) is considered a big challenge owing difficulty tissues, segmenting them healthier tissue challenging when manual done through radiologists. Among recent proposals method, method based on machine learning (ML) image processing could be better. Thus, DL-based extensively applied, convolutional network has better effects. The deep model problem large loss information number parameters encoding decoding processes. With this motivation, article presents new Deep Transfer Learning with Semantic Segmentation Medical Image Analysis (DTLSS-MIA) technique MRI images. DTLSS-MIA aims segment affected area At first, presented utilizes Median filtering (MF) approach optimize quality remove noise. For semantic follows DeepLabv3 + backbone EfficientNet determining region. Moreover, CapsNet architecture employed feature extraction process. Lastly, crayfish optimization (CFO) diffusion variational autoencoder (D-VAE) used as classification mechanism, CFO effectively tunes D-VAE hyperparameter. simulation analysis validated benchmark dataset. performance validation exhibited superior accuracy value 99.53% over other methods.

Язык: Английский

SAlexNet: Superimposed AlexNet using Residual Attention Mechanism for Accurate and Efficient Automatic Primary Brain Tumor Detection and Classification DOI Creative Commons

Qurat-ul-ain Chaudhary,

Shahzad Ahmad Qureshi,

Touseef Sadiq

и другие.

Results in Engineering, Год журнала: 2025, Номер unknown, С. 104025 - 104025

Опубликована: Янв. 1, 2025

Язык: Английский

Процитировано

3

A multi-stage fusion deep learning framework merging local patterns with attention-driven contextual dependencies for cancer detection DOI
Hatice Çatal Reis, Veysel Turk

Computers in Biology and Medicine, Год журнала: 2025, Номер 189, С. 109916 - 109916

Опубликована: Март 6, 2025

Язык: Английский

Процитировано

1

Advancing multiple sclerosis diagnosis through an innovative hybrid AI framework incorporating Multi-view ResNet and quantum RIME-inspired metaheuristics DOI Creative Commons

Mohamed G. Khattap,

Mohammed Sallah, Abdelghani Dahou

и другие.

Ain Shams Engineering Journal, Год журнала: 2025, Номер 16(2), С. 103241 - 103241

Опубликована: Янв. 13, 2025

Язык: Английский

Процитировано

1

Automated fall risk classification for construction workers using wearable devices, BIM, and optimized hybrid deep learning DOI
Min‐Yuan Cheng,

Deyla V.N. Soegiono,

Akhmad F.K. Khitam

и другие.

Automation in Construction, Год журнала: 2025, Номер 172, С. 106072 - 106072

Опубликована: Фев. 19, 2025

Язык: Английский

Процитировано

1

A Comprehensive Review of AI Diagnosis Strategies for Age-Related Macular Degeneration (AMD) DOI Creative Commons

Aya A. Abd El-Khalek,

Hossam Magdy Balaha, Ashraf Sewelam

и другие.

Bioengineering, Год журнала: 2024, Номер 11(7), С. 711 - 711

Опубликована: Июль 13, 2024

The rapid advancement of computational infrastructure has led to unprecedented growth in machine learning, deep and computer vision, fundamentally transforming the analysis retinal images. By utilizing a wide array visual cues extracted from fundus images, sophisticated artificial intelligence models have been developed diagnose various disorders. This paper concentrates on detection Age-Related Macular Degeneration (AMD), significant condition, by offering an exhaustive examination recent learning methodologies. Additionally, it discusses potential obstacles constraints associated with implementing this technology field ophthalmology. Through systematic review, research aims assess efficacy techniques discerning AMD different modalities as they shown promise disorders diagnosis. Organized around prevalent datasets imaging techniques, initially outlines assessment criteria, image preprocessing methodologies, frameworks before conducting thorough investigation diverse approaches for detection. Drawing insights more than 30 selected studies, conclusion underscores current trajectories, major challenges, future prospects diagnosis, providing valuable resource both scholars practitioners domain.

Язык: Английский

Процитировано

5

Brain tumor detection across diverse MR images: An automated triple-module approach integrating reduced fused deep features and machine learning DOI Creative Commons

Yash Pande,

Jyotismita Chaki

Results in Engineering, Год журнала: 2024, Номер unknown, С. 103832 - 103832

Опубликована: Дек. 1, 2024

Язык: Английский

Процитировано

4

Early detection of monkeypox: Analysis and optimization of pretrained deep learning models using the Sparrow Search Algorithm DOI Creative Commons
Amna Bamaqa, Waleed M. Bahgat, Yousry AbdulAzeem

и другие.

Results in Engineering, Год журнала: 2024, Номер 24, С. 102985 - 102985

Опубликована: Сен. 30, 2024

Язык: Английский

Процитировано

3

Predicting Paediatric Brain Disorders from MRI Images Using Advanced Deep Learning Techniques DOI
Yogesh Kumar, Priya Bhardwaj, Supriya Shrivastav

и другие.

Neuroinformatics, Год журнала: 2025, Номер 23(2)

Опубликована: Янв. 16, 2025

Язык: Английский

Процитировано

0

AOA-guided hyperparameter refinement for precise medical image segmentation DOI
Hossam Magdy Balaha, Waleed M. Bahgat, Mansourah Aljohani

и другие.

Alexandria Engineering Journal, Год журнала: 2025, Номер 120, С. 547 - 560

Опубликована: Фев. 24, 2025

Язык: Английский

Процитировано

0

Securing SDON with hybrid evolutionary intrusion detection system: An ensemble algorithm for feature selection and classification DOI

Benitha Christinal J,

Ameelia Roseline A

Optical Fiber Technology, Год журнала: 2025, Номер 93, С. 104206 - 104206

Опубликована: Март 20, 2025

Язык: Английский

Процитировано

0