A fuzzy rank-based ensemble of CNN models for MRI segmentation DOI
Daria Valenkova, Asya I. Lyanova, Aleksandr Sinitca

и другие.

Biomedical Signal Processing and Control, Год журнала: 2024, Номер 102, С. 107342 - 107342

Опубликована: Дек. 28, 2024

Язык: Английский

Accessible AI Diagnostics and Lightweight Brain Tumor Detection on Medical Edge Devices DOI Creative Commons
Akmalbek Abdusalomov, Sanjar Mirzakhalilov, Sabina Umirzakova

и другие.

Bioengineering, Год журнала: 2025, Номер 12(1), С. 62 - 62

Опубликована: Янв. 13, 2025

The timely and accurate detection of brain tumors is crucial for effective medical intervention, especially in resource-constrained settings. This study proposes a lightweight efficient RetinaNet variant tailored edge device deployment. model reduces computational overhead while maintaining high accuracy by replacing the computationally intensive ResNet backbone with MobileNet leveraging depthwise separable convolutions. modified achieves an average precision (AP) 32.1, surpassing state-of-the-art models small tumor (APS: 14.3) large localization (APL: 49.7). Furthermore, significantly costs, making real-time analysis feasible on low-power hardware. Clinical relevance key focus this work. proposed addresses diagnostic challenges small, variable-sized often overlooked existing methods. Its architecture enables portable devices, bridging gap accessibility underserved regions. Extensive experiments BRATS dataset demonstrate robustness across sizes configurations, confidence scores consistently exceeding 81%. advancement holds potential improving early detection, particularly remote areas lacking advanced infrastructure, thereby contributing to better patient outcomes broader AI-driven tools.

Язык: Английский

Процитировано

3

An End-to-End Approach to Detect Railway Track Defects based on Supervised and Self-Supervised Learning DOI Creative Commons
Muhammad Haroon, Muhammad Jawad Khan, Hammad M. Cheema

и другие.

Results in Engineering, Год журнала: 2024, Номер unknown, С. 103326 - 103326

Опубликована: Ноя. 1, 2024

Язык: Английский

Процитировано

3

Brain tumor segmentation using multi-scale attention U-Net with EfficientNetB4 encoder for enhanced MRI analysis DOI Creative Commons

R. Preetha,

Jasmine Pemeena Priyadarsini M,

J. S. Nisha

и другие.

Scientific Reports, Год журнала: 2025, Номер 15(1)

Опубликована: Март 22, 2025

Abstract Accurate brain tumor segmentation is critical for clinical diagnosis and treatment planning. This study proposes an advanced framework that combines Multiscale Attention U-Net with the EfficientNetB4 encoder to enhance performance. Unlike conventional U-Net-based architectures, proposed model leverages EfficientNetB4’s compound scaling optimize feature extraction at multiple resolutions while maintaining low computational overhead. Additionally, Multi-Scale Mechanism (utilizing $$1\times 1, 3\times 3$$ , $$5\times 5$$ kernels) enhances representation by capturing boundaries across different scales, addressing limitations of existing CNN-based methods. Our approach effectively suppresses irrelevant regions localization through attention-enhanced skip connections residual attention blocks. Extensive experiments were conducted on publicly available Figshare dataset, comparing EfficientNet variants determine optimal architecture. demonstrated superior performance, achieving Accuracy 99.79%, MCR 0.21%, Dice Coefficient 0.9339, Intersection over Union (IoU) 0.8795, outperforming other in accuracy efficiency. The training process was analyzed using key metrics, including Coefficient, dice loss, precision, recall, specificity, IoU, showing stable convergence generalization. method evaluated against state-of-the-art approaches, surpassing them all accuracy, mean IoU. demonstrates effectiveness robust efficient tumors, positioning it as a valuable tool research applications.

Язык: Английский

Процитировано

0

An Advanced Brain Tumor Detection Model Using a Hybrid (1D/2D) Convolution-Based Efficient Attention Network with Image Feature Extraction DOI

R. Santhi,

Dahlia Sam,

K. R. Nataraj

и другие.

Sensing and Imaging, Год журнала: 2025, Номер 26(1)

Опубликована: Апрель 16, 2025

Язык: Английский

Процитировано

0

Advancing Breast Cancer Diagnosis: Integrating Deep Transfer Learning and U-Net Segmentation for Precise Classification and Delineation of Ultrasound Images DOI Creative Commons
Divine Senanu Ametefe, Dah John,

Abdulmalik Adozuka Aliu

и другие.

Results in Engineering, Год журнала: 2025, Номер unknown, С. 105047 - 105047

Опубликована: Апрель 1, 2025

Язык: Английский

Процитировано

0

Application of deep learning in magnetic spherule detection: a combined method of YOLOv8 and U-Net models DOI
Zhanfeng Cui, Yonghong Wang

Earth Science Informatics, Год журнала: 2025, Номер 18(2)

Опубликована: Май 14, 2025

Язык: Английский

Процитировано

0

Integration of Drone and Machine Learning Technology For Predicting Power Infrastructure Faults Efficiently DOI Creative Commons
WT Al-Shaibani, Ibraheem Shayea, Ramazan Çağlar

и другие.

Results in Engineering, Год журнала: 2024, Номер unknown, С. 103207 - 103207

Опубликована: Окт. 1, 2024

Язык: Английский

Процитировано

1

A fuzzy rank-based ensemble of CNN models for MRI segmentation DOI
Daria Valenkova, Asya I. Lyanova, Aleksandr Sinitca

и другие.

Biomedical Signal Processing and Control, Год журнала: 2024, Номер 102, С. 107342 - 107342

Опубликована: Дек. 28, 2024

Язык: Английский

Процитировано

1