Biomedical Signal Processing and Control, Год журнала: 2024, Номер 102, С. 107342 - 107342
Опубликована: Дек. 28, 2024
Язык: Английский
Biomedical Signal Processing and Control, Год журнала: 2024, Номер 102, С. 107342 - 107342
Опубликована: Дек. 28, 2024
Язык: Английский
Bioengineering, Год журнала: 2025, Номер 12(1), С. 62 - 62
Опубликована: Янв. 13, 2025
The timely and accurate detection of brain tumors is crucial for effective medical intervention, especially in resource-constrained settings. This study proposes a lightweight efficient RetinaNet variant tailored edge device deployment. model reduces computational overhead while maintaining high accuracy by replacing the computationally intensive ResNet backbone with MobileNet leveraging depthwise separable convolutions. modified achieves an average precision (AP) 32.1, surpassing state-of-the-art models small tumor (APS: 14.3) large localization (APL: 49.7). Furthermore, significantly costs, making real-time analysis feasible on low-power hardware. Clinical relevance key focus this work. proposed addresses diagnostic challenges small, variable-sized often overlooked existing methods. Its architecture enables portable devices, bridging gap accessibility underserved regions. Extensive experiments BRATS dataset demonstrate robustness across sizes configurations, confidence scores consistently exceeding 81%. advancement holds potential improving early detection, particularly remote areas lacking advanced infrastructure, thereby contributing to better patient outcomes broader AI-driven tools.
Язык: Английский
Процитировано
3Results in Engineering, Год журнала: 2024, Номер unknown, С. 103326 - 103326
Опубликована: Ноя. 1, 2024
Язык: Английский
Процитировано
3Scientific Reports, Год журнала: 2025, Номер 15(1)
Опубликована: Март 22, 2025
Abstract Accurate brain tumor segmentation is critical for clinical diagnosis and treatment planning. This study proposes an advanced framework that combines Multiscale Attention U-Net with the EfficientNetB4 encoder to enhance performance. Unlike conventional U-Net-based architectures, proposed model leverages EfficientNetB4’s compound scaling optimize feature extraction at multiple resolutions while maintaining low computational overhead. Additionally, Multi-Scale Mechanism (utilizing $$1\times 1, 3\times 3$$ , $$5\times 5$$ kernels) enhances representation by capturing boundaries across different scales, addressing limitations of existing CNN-based methods. Our approach effectively suppresses irrelevant regions localization through attention-enhanced skip connections residual attention blocks. Extensive experiments were conducted on publicly available Figshare dataset, comparing EfficientNet variants determine optimal architecture. demonstrated superior performance, achieving Accuracy 99.79%, MCR 0.21%, Dice Coefficient 0.9339, Intersection over Union (IoU) 0.8795, outperforming other in accuracy efficiency. The training process was analyzed using key metrics, including Coefficient, dice loss, precision, recall, specificity, IoU, showing stable convergence generalization. method evaluated against state-of-the-art approaches, surpassing them all accuracy, mean IoU. demonstrates effectiveness robust efficient tumors, positioning it as a valuable tool research applications.
Язык: Английский
Процитировано
0Sensing and Imaging, Год журнала: 2025, Номер 26(1)
Опубликована: Апрель 16, 2025
Язык: Английский
Процитировано
0Results in Engineering, Год журнала: 2025, Номер unknown, С. 105047 - 105047
Опубликована: Апрель 1, 2025
Язык: Английский
Процитировано
0Earth Science Informatics, Год журнала: 2025, Номер 18(2)
Опубликована: Май 14, 2025
Язык: Английский
Процитировано
0Results in Engineering, Год журнала: 2024, Номер unknown, С. 103207 - 103207
Опубликована: Окт. 1, 2024
Язык: Английский
Процитировано
1Biomedical Signal Processing and Control, Год журнала: 2024, Номер 102, С. 107342 - 107342
Опубликована: Дек. 28, 2024
Язык: Английский
Процитировано
1