Measurement, Год журнала: 2025, Номер unknown, С. 118072 - 118072
Опубликована: Июнь 1, 2025
Язык: Английский
Measurement, Год журнала: 2025, Номер unknown, С. 118072 - 118072
Опубликована: Июнь 1, 2025
Язык: Английский
Electronics, Год журнала: 2025, Номер 14(2), С. 341 - 341
Опубликована: Янв. 17, 2025
Rotating machines are vital for ensuring reliability, safety, and operational availability across various industrial sectors. Among the faults that can affect these machines, shaft misalignment is particularly critical due to its impact on other components connected shaft, making it a key focus diagnostic systems. Misalignment lead significant energy losses, therefore, early detection crucial. Vibration analysis an effective method identifying at stage, enabling corrective actions before negatively impacts equipment efficiency consumption. To improve monitoring efficiency, essential system not only intelligent but also capable of operating in real-time. This study proposes methodology diagnosing by combining wavelet transform feature extraction transfer learning fault classification. The accuracy proposed soft real-time solution validated through comparison with time-frequency transformation techniques networks. includes experimental procedure simulating using laser measurement tool. Additionally, evaluates thermal vibration signature each type multi-sensor monitoring, highlighting effectiveness robustness approach. First, used obtain good representation signal domain. step allows features from signals. Then, network processes different layers identify their severity. combination provides decision-support tool faults, monitoring. tested two datasets: first public dataset, while second was created laboratory simulate alignment demonstrate effect this defect imaging. evaluation carried out criteria methodology. results highlight potential implementing faults.
Язык: Английский
Процитировано
4Journal of Engineering Research, Год журнала: 2025, Номер unknown
Опубликована: Янв. 1, 2025
Язык: Английский
Процитировано
2Results in Engineering, Год журнала: 2025, Номер 25, С. 103963 - 103963
Опубликована: Янв. 5, 2025
Язык: Английский
Процитировано
1Results in Engineering, Год журнала: 2025, Номер unknown, С. 104569 - 104569
Опубликована: Март 1, 2025
Язык: Английский
Процитировано
1Applied Sciences, Год журнала: 2025, Номер 15(5), С. 2721 - 2721
Опубликована: Март 4, 2025
The power quality index is an important in the industry. Power disturbances (PQDs) have a great impact on grid. It to identify type of PQDs accurately. However, it difficult analyze large number PQDs, especially more complex systems. Considering limitations traditional time–frequency domain method and complexity optimization algorithm extracting features, novel proposed classify this paper, which based unscented Kalman filter (UKF) kernel extreme learning machine (KELM). UKF used detect process original disturbances, anti-noise detection performance analyzed by tracking amplitude change voltage swell under different signal–noise ratios (SNRs). amplitudes fundamental wave, third harmonic, fifth seventh oscillatory wave are tracked real time, their minimum peak indexes taken as optimal feature vector set. set classified KELM. has also been evaluated with simulated experimental results.
Язык: Английский
Процитировано
0Petroleum Science, Год журнала: 2025, Номер unknown
Опубликована: Апрель 1, 2025
Язык: Английский
Процитировано
0Chemical Engineering Journal Advances, Год журнала: 2025, Номер unknown, С. 100787 - 100787
Опубликована: Июнь 1, 2025
Язык: Английский
Процитировано
0Measurement, Год журнала: 2025, Номер unknown, С. 118072 - 118072
Опубликована: Июнь 1, 2025
Язык: Английский
Процитировано
0