Intelligent prediction framework for axial compressive capacity of FRP-RACFST columns DOI
Qicheng Xu, Junpeng Li,

Yingcai Fang

и другие.

Materials Today Communications, Год журнала: 2024, Номер unknown, С. 110999 - 110999

Опубликована: Ноя. 1, 2024

Язык: Английский

Compressive strength prediction models for concrete containing nano materials and exposed to elevated temperatures DOI Creative Commons
Hany A. Dahish, Ahmed D. Almutairi

Results in Engineering, Год журнала: 2025, Номер unknown, С. 103975 - 103975

Опубликована: Янв. 1, 2025

Язык: Английский

Процитировано

5

Machine Learning Approach for Prediction and Reliability Analysis of Failure Strength of U-Shaped Concrete Samples Joined with UHPC and PUC Composites DOI Open Access
Sadi Ibrahim Haruna, Yasser E. Ibrahim, Ibrahim Khalil Umar

и другие.

Journal of Composites Science, Год журнала: 2025, Номер 9(1), С. 23 - 23

Опубликована: Янв. 6, 2025

To meet the increasing demand for resilient infrastructure in seismic and high-impact areas, accurate prediction reliability analysis of performance composite structures under impact loads is essential. Conventional techniques, including experimental testing high-quality finite element simulation, require considerable time resources. address these issues, this study investigated individual hybrid models support vector regression (SVR), Gaussian process (GPR), improved eliminate particle swamp optimization hybridized artificial neural network (IEPANN) predicting failure strength concrete developed by combining normal (NC) with ultra-high (UHPC) polyurethane-based polymer (PUC), considering different surface treatments subjected to various static loads. An dataset was utilized train ML perform on dataset. Key parameters included compressive (Cfc), flexural load U-shaped specimens (P), density (ρ), first crack (N1), splitting tensile (ft). Results revealed that all had high accuracy, achieving NSE values above acceptable thresholds greater than 90% across datasets. Statistical errors such as RMSE, MAE, PBIAS were calculated fall within limits. Hybrid IEPANN appeared be most effective model, demonstrating highest value 0.999 lowest PBIAS, MAE 0.0013, 0.0018, 0.001, respectively. The times (N1 N2) reduced survival probability increased.

Язык: Английский

Процитировано

2

Scaling effect on impact responses of steel beams and its energy threshold DOI
Renbo Zhang, Shengran Hao, Liu Jin

и другие.

International Journal of Mechanical Sciences, Год журнала: 2025, Номер unknown, С. 109996 - 109996

Опубликована: Янв. 1, 2025

Язык: Английский

Процитировано

1

Metaheuristic-based prediction of shear resistance of headed stud connectors embedded in concrete coupled with SHAP explainability DOI Creative Commons
Sadi Ibrahim Haruna, Abba Bashir, Sani I. Abba

и другие.

Results in Engineering, Год журнала: 2025, Номер unknown, С. 104445 - 104445

Опубликована: Фев. 1, 2025

Язык: Английский

Процитировано

0

Integrated Machine Learning and Response Surface Methodology for Comprehensive Rheological Characterization of low-carbon binders DOI Creative Commons
Munir Iqbal, Sohaib Nazar, Jian Yang

и другие.

Case Studies in Construction Materials, Год журнала: 2025, Номер unknown, С. e04475 - e04475

Опубликована: Март 1, 2025

Язык: Английский

Процитировано

0

Optimizing bio-hybrid composites for impact resistance using machine learning DOI
Manzar Masud, Aamir Mubashar, Salman Sagheer Warsi

и другие.

Journal of the Brazilian Society of Mechanical Sciences and Engineering, Год журнала: 2025, Номер 47(5)

Опубликована: Апрель 4, 2025

Язык: Английский

Процитировано

0

EXPLAINABLE MACHINE LEARNING-BASED PREDICTION OF BLAST LOADS ON STRUCTURAL SURFACES IN TWO-DIMENSIONAL SPATIAL COORDINATES DOI Creative Commons
Chathura Widanage, Damith Mohotti, C.K. Lee

и другие.

Results in Engineering, Год журнала: 2025, Номер unknown, С. 104979 - 104979

Опубликована: Апрель 1, 2025

Язык: Английский

Процитировано

0

ADVANCED PREDICTIVE MODELING OF SHEAR STRENGTH IN STAINLESS-STEEL COLUMN WEB PANELS USING EXPLAINABLE AI INSIGHTS DOI Creative Commons
Sina Sarfarazi, Rabee Shamass, Federico Guarracino

и другие.

Results in Engineering, Год журнала: 2024, Номер unknown, С. 103454 - 103454

Опубликована: Ноя. 1, 2024

Язык: Английский

Процитировано

2

Intelligent prediction framework for axial compressive capacity of FRP-RACFST columns DOI
Qicheng Xu, Junpeng Li,

Yingcai Fang

и другие.

Materials Today Communications, Год журнала: 2024, Номер unknown, С. 110999 - 110999

Опубликована: Ноя. 1, 2024

Язык: Английский

Процитировано

1